Abstract

A detailed study of the thermal and strain sensitivities of a long-period grating when the device is immersed in different external media is presented. The range of refractive indices analyzed are within 1.000 to 1.447, corresponding to samples of air, water, ethanol, naphtha, thinner, turpentine, and kerosene. Within the same range of refractive indices, the strain sensitivity is between (0.24±0.03) and (0.94±0.11)pm/με. For the grating immersed in these fluids, the refractive index sensitivity ranges from 3 to 1035.6nm per refractive index units. The coupling thermo-optic coefficients and the strain-optic coefficients are also measured, resulting in the range from (2.45±0.04)×105 to (15.89±0.82)×105  deg  C1 and (1.15±0.04) to (1.61±0.04)με1, respectively. A noticeable nonlinear behavior of the thermal sensitivity is found for external media with refractive indices higher than 1.430.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
    [CrossRef]
  2. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  3. K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, "Novel temperature-insensitivity long-period fiber grating using a boron-codoped-germanosilicate-core fiber," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 347-348.
    [CrossRef]
  4. V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, N. A. Zabaronick, and G. A. T. Eyck, "Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures," Opt. Eng. 36, 1872-1876 (1997).
    [CrossRef]
  5. S. Chen, Z. Tong, Q. Zhao, Z. Liu, and X. Dong, "A smart bending sensor with a novel temperature- and strain-insensitive long-period grating," Sens. Actuators A 116, 103-106 (2004).
    [CrossRef]
  6. M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
    [CrossRef]
  7. L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber grating," Opt. Mater. 14, 239-242 (2000).
    [CrossRef]
  8. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, "Sampled fiber Bragg grating for simultaneous refractive index and temperature measurement," Opt. Lett. 26, 774-776 (2001).
    [CrossRef]
  9. T. Allsop, L. Zhang, and I. Bennion, "Detection of organic aromatic compound in paraffin by a long-period fiber grating optical sensor with optimized sensitivity," Opt. Commun. 191, 181-190 (May 2001).
    [CrossRef]
  10. R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic sensor for hydrocarbon detection," Sens. Actuators B 105, 430-436 (2005).
    [CrossRef]
  11. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  12. S. Takahashi and S. Shibata, "Thermal variation of attenuation for optical fibers," J. Non-Cryst. Solids 30, 359-370 (1979).
    [CrossRef]
  13. K. S. Chiang, Y. Liu, M. N. Ng, and X. Dong, "Analysis of etched long-period fibre grating and its response to external refractive index," Electron. Lett. 36, 966-967 (2000).
    [CrossRef]
  14. W. He, W. Shi, P. Cai, and A. Ye, "Applications of acrylate-based polymer and silicone resin on LPFG-based devices," Opt. Mater. 21, 507-510 (2002).
    [CrossRef]
  15. R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic hydrocarbon sensors based on long-period gratings," J. Microwave Optoelectron. 3, 47-55 (2004).
  16. D. A. Pereira, O. Frazão, and J. L. Santos, "Fibre Bragg grating sensing system for simultaneous measurement of salinity and temperature," Opt. Eng. 43, 299-304 (2004).
    [CrossRef]
  17. M. R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaum's Outline Series (McGrawHill, 1993).

2005 (1)

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic sensor for hydrocarbon detection," Sens. Actuators B 105, 430-436 (2005).
[CrossRef]

2004 (3)

S. Chen, Z. Tong, Q. Zhao, Z. Liu, and X. Dong, "A smart bending sensor with a novel temperature- and strain-insensitive long-period grating," Sens. Actuators A 116, 103-106 (2004).
[CrossRef]

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic hydrocarbon sensors based on long-period gratings," J. Microwave Optoelectron. 3, 47-55 (2004).

D. A. Pereira, O. Frazão, and J. L. Santos, "Fibre Bragg grating sensing system for simultaneous measurement of salinity and temperature," Opt. Eng. 43, 299-304 (2004).
[CrossRef]

2003 (2)

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

2002 (2)

M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
[CrossRef]

W. He, W. Shi, P. Cai, and A. Ye, "Applications of acrylate-based polymer and silicone resin on LPFG-based devices," Opt. Mater. 21, 507-510 (2002).
[CrossRef]

2001 (2)

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, "Sampled fiber Bragg grating for simultaneous refractive index and temperature measurement," Opt. Lett. 26, 774-776 (2001).
[CrossRef]

T. Allsop, L. Zhang, and I. Bennion, "Detection of organic aromatic compound in paraffin by a long-period fiber grating optical sensor with optimized sensitivity," Opt. Commun. 191, 181-190 (May 2001).
[CrossRef]

2000 (2)

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber grating," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

K. S. Chiang, Y. Liu, M. N. Ng, and X. Dong, "Analysis of etched long-period fibre grating and its response to external refractive index," Electron. Lett. 36, 966-967 (2000).
[CrossRef]

1997 (1)

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, N. A. Zabaronick, and G. A. T. Eyck, "Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures," Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

1979 (1)

S. Takahashi and S. Shibata, "Thermal variation of attenuation for optical fibers," J. Non-Cryst. Solids 30, 359-370 (1979).
[CrossRef]

Allsop, T.

T. Allsop, L. Zhang, and I. Bennion, "Detection of organic aromatic compound in paraffin by a long-period fiber grating optical sensor with optimized sensitivity," Opt. Commun. 191, 181-190 (May 2001).
[CrossRef]

Bennion, I.

T. Allsop, L. Zhang, and I. Bennion, "Detection of organic aromatic compound in paraffin by a long-period fiber grating optical sensor with optimized sensitivity," Opt. Commun. 191, 181-190 (May 2001).
[CrossRef]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, "Sampled fiber Bragg grating for simultaneous refractive index and temperature measurement," Opt. Lett. 26, 774-776 (2001).
[CrossRef]

Bhatia, V.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, N. A. Zabaronick, and G. A. T. Eyck, "Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures," Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Cai, P.

W. He, W. Shi, P. Cai, and A. Ye, "Applications of acrylate-based polymer and silicone resin on LPFG-based devices," Opt. Mater. 21, 507-510 (2002).
[CrossRef]

Campbell, D. K.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, N. A. Zabaronick, and G. A. T. Eyck, "Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures," Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Chen, S.

S. Chen, Z. Tong, Q. Zhao, Z. Liu, and X. Dong, "A smart bending sensor with a novel temperature- and strain-insensitive long-period grating," Sens. Actuators A 116, 103-106 (2004).
[CrossRef]

Chen, Z.

M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
[CrossRef]

Chiang, K. S.

M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
[CrossRef]

K. S. Chiang, Y. Liu, M. N. Ng, and X. Dong, "Analysis of etched long-period fibre grating and its response to external refractive index," Electron. Lett. 36, 966-967 (2000).
[CrossRef]

D'Alberto, T. G.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, N. A. Zabaronick, and G. A. T. Eyck, "Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures," Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Dong, X.

S. Chen, Z. Tong, Q. Zhao, Z. Liu, and X. Dong, "A smart bending sensor with a novel temperature- and strain-insensitive long-period grating," Sens. Actuators A 116, 103-106 (2004).
[CrossRef]

K. S. Chiang, Y. Liu, M. N. Ng, and X. Dong, "Analysis of etched long-period fibre grating and its response to external refractive index," Electron. Lett. 36, 966-967 (2000).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Eyck, G. A. T.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, N. A. Zabaronick, and G. A. T. Eyck, "Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures," Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Fabris, J. L.

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic sensor for hydrocarbon detection," Sens. Actuators B 105, 430-436 (2005).
[CrossRef]

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic hydrocarbon sensors based on long-period gratings," J. Microwave Optoelectron. 3, 47-55 (2004).

Falate, R.

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic sensor for hydrocarbon detection," Sens. Actuators B 105, 430-436 (2005).
[CrossRef]

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic hydrocarbon sensors based on long-period gratings," J. Microwave Optoelectron. 3, 47-55 (2004).

Frazão, O.

D. A. Pereira, O. Frazão, and J. L. Santos, "Fibre Bragg grating sensing system for simultaneous measurement of salinity and temperature," Opt. Eng. 43, 299-304 (2004).
[CrossRef]

Gao, D. S.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber grating," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Gwandu, B. A. L.

He, W.

W. He, W. Shi, P. Cai, and A. Ye, "Applications of acrylate-based polymer and silicone resin on LPFG-based devices," Opt. Mater. 21, 507-510 (2002).
[CrossRef]

Himeno, K.

K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, "Novel temperature-insensitivity long-period fiber grating using a boron-codoped-germanosilicate-core fiber," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 347-348.
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kalinowski, H. J.

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic sensor for hydrocarbon detection," Sens. Actuators B 105, 430-436 (2005).
[CrossRef]

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic hydrocarbon sensors based on long-period gratings," J. Microwave Optoelectron. 3, 47-55 (2004).

Kamikawachi, R. C.

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic sensor for hydrocarbon detection," Sens. Actuators B 105, 430-436 (2005).
[CrossRef]

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic hydrocarbon sensors based on long-period gratings," J. Microwave Optoelectron. 3, 47-55 (2004).

Lee, B.

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Li, H. P.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber grating," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Liu, Y.

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, "Sampled fiber Bragg grating for simultaneous refractive index and temperature measurement," Opt. Lett. 26, 774-776 (2001).
[CrossRef]

K. S. Chiang, Y. Liu, M. N. Ng, and X. Dong, "Analysis of etched long-period fibre grating and its response to external refractive index," Electron. Lett. 36, 966-967 (2000).
[CrossRef]

Liu, Z.

S. Chen, Z. Tong, Q. Zhao, Z. Liu, and X. Dong, "A smart bending sensor with a novel temperature- and strain-insensitive long-period grating," Sens. Actuators A 116, 103-106 (2004).
[CrossRef]

Muller, M.

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic sensor for hydrocarbon detection," Sens. Actuators B 105, 430-436 (2005).
[CrossRef]

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic hydrocarbon sensors based on long-period gratings," J. Microwave Optoelectron. 3, 47-55 (2004).

Ng, M. N.

M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
[CrossRef]

K. S. Chiang, Y. Liu, M. N. Ng, and X. Dong, "Analysis of etched long-period fibre grating and its response to external refractive index," Electron. Lett. 36, 966-967 (2000).
[CrossRef]

Okude, S.

K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, "Novel temperature-insensitivity long-period fiber grating using a boron-codoped-germanosilicate-core fiber," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 347-348.
[CrossRef]

Pereira, D. A.

D. A. Pereira, O. Frazão, and J. L. Santos, "Fibre Bragg grating sensing system for simultaneous measurement of salinity and temperature," Opt. Eng. 43, 299-304 (2004).
[CrossRef]

Qin, L.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber grating," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Sakai, T.

K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, "Novel temperature-insensitivity long-period fiber grating using a boron-codoped-germanosilicate-core fiber," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 347-348.
[CrossRef]

Santos, J. L.

D. A. Pereira, O. Frazão, and J. L. Santos, "Fibre Bragg grating sensing system for simultaneous measurement of salinity and temperature," Opt. Eng. 43, 299-304 (2004).
[CrossRef]

Sherr, D.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, N. A. Zabaronick, and G. A. T. Eyck, "Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures," Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Shi, W.

W. He, W. Shi, P. Cai, and A. Ye, "Applications of acrylate-based polymer and silicone resin on LPFG-based devices," Opt. Mater. 21, 507-510 (2002).
[CrossRef]

Shibata, S.

S. Takahashi and S. Shibata, "Thermal variation of attenuation for optical fibers," J. Non-Cryst. Solids 30, 359-370 (1979).
[CrossRef]

Shima, K.

K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, "Novel temperature-insensitivity long-period fiber grating using a boron-codoped-germanosilicate-core fiber," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 347-348.
[CrossRef]

Shu, X.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Spiegel, M. R.

M. R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaum's Outline Series (McGrawHill, 1993).

Takahashi, S.

S. Takahashi and S. Shibata, "Thermal variation of attenuation for optical fibers," J. Non-Cryst. Solids 30, 359-370 (1979).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Tong, Z.

S. Chen, Z. Tong, Q. Zhao, Z. Liu, and X. Dong, "A smart bending sensor with a novel temperature- and strain-insensitive long-period grating," Sens. Actuators A 116, 103-106 (2004).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Wada, A.

K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, "Novel temperature-insensitivity long-period fiber grating using a boron-codoped-germanosilicate-core fiber," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 347-348.
[CrossRef]

Wang, Q. Y.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber grating," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Wei, Z. X.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber grating," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Yamauchi, R.

K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, "Novel temperature-insensitivity long-period fiber grating using a boron-codoped-germanosilicate-core fiber," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 347-348.
[CrossRef]

Ye, A.

W. He, W. Shi, P. Cai, and A. Ye, "Applications of acrylate-based polymer and silicone resin on LPFG-based devices," Opt. Mater. 21, 507-510 (2002).
[CrossRef]

Zabaronick, N. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, N. A. Zabaronick, and G. A. T. Eyck, "Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures," Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Zhang, L.

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, "Sampled fiber Bragg grating for simultaneous refractive index and temperature measurement," Opt. Lett. 26, 774-776 (2001).
[CrossRef]

T. Allsop, L. Zhang, and I. Bennion, "Detection of organic aromatic compound in paraffin by a long-period fiber grating optical sensor with optimized sensitivity," Opt. Commun. 191, 181-190 (May 2001).
[CrossRef]

Zhang, Y. S.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber grating," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Zhao, Q.

S. Chen, Z. Tong, Q. Zhao, Z. Liu, and X. Dong, "A smart bending sensor with a novel temperature- and strain-insensitive long-period grating," Sens. Actuators A 116, 103-106 (2004).
[CrossRef]

Zheng, W.

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber grating," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

Electron. Lett. (1)

K. S. Chiang, Y. Liu, M. N. Ng, and X. Dong, "Analysis of etched long-period fibre grating and its response to external refractive index," Electron. Lett. 36, 966-967 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
[CrossRef]

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

J. Microwave Optoelectron. (1)

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic hydrocarbon sensors based on long-period gratings," J. Microwave Optoelectron. 3, 47-55 (2004).

J. Non-Cryst. Solids (1)

S. Takahashi and S. Shibata, "Thermal variation of attenuation for optical fibers," J. Non-Cryst. Solids 30, 359-370 (1979).
[CrossRef]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Opt. Commun. (1)

T. Allsop, L. Zhang, and I. Bennion, "Detection of organic aromatic compound in paraffin by a long-period fiber grating optical sensor with optimized sensitivity," Opt. Commun. 191, 181-190 (May 2001).
[CrossRef]

Opt. Eng. (2)

D. A. Pereira, O. Frazão, and J. L. Santos, "Fibre Bragg grating sensing system for simultaneous measurement of salinity and temperature," Opt. Eng. 43, 299-304 (2004).
[CrossRef]

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D'Alberto, N. A. Zabaronick, and G. A. T. Eyck, "Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures," Opt. Eng. 36, 1872-1876 (1997).
[CrossRef]

Opt. Fiber Technol. (1)

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (2)

L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao, "Compact temperature-compensating package for long-period fiber grating," Opt. Mater. 14, 239-242 (2000).
[CrossRef]

W. He, W. Shi, P. Cai, and A. Ye, "Applications of acrylate-based polymer and silicone resin on LPFG-based devices," Opt. Mater. 21, 507-510 (2002).
[CrossRef]

Sens. Actuators A (1)

S. Chen, Z. Tong, Q. Zhao, Z. Liu, and X. Dong, "A smart bending sensor with a novel temperature- and strain-insensitive long-period grating," Sens. Actuators A 116, 103-106 (2004).
[CrossRef]

Sens. Actuators B (1)

R. Falate, R. C. Kamikawachi, J. L. Fabris, M. Muller, and H. J. Kalinowski, "Fiber optic sensor for hydrocarbon detection," Sens. Actuators B 105, 430-436 (2005).
[CrossRef]

Other (2)

M. R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaum's Outline Series (McGrawHill, 1993).

K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, "Novel temperature-insensitivity long-period fiber grating using a boron-codoped-germanosilicate-core fiber," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 347-348.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Left axis, LPG refractive index response and theoretical fitting given by Eq. (5). Right axis, refractive index sensitivity, RIS (Eq. 6). Uncertainty in measured points is typically less than symbol size.

Fig. 2
Fig. 2

LPG thermal response in the presence of different external media and the theoretical fitting given by Eq. (8).

Fig. 3
Fig. 3

Influence of the external refractive index on the coupling thermo-optic coefficient of the LPG fourth mode (LP04). The line connecting the data points is solely a visual aid.

Fig. 4
Fig. 4

Left axis, LPG strain response in the presence of different external media. Also the fractional change in the grating period due to the applied strain, upper axis ( Δ Λ / Λ ) versus the fractional change in the resonance wavelength, right axis ( Δ λ / λ ) . The error bars are related to the left and bottom axes.

Fig. 5
Fig. 5

Strain-optic coefficient of the LPG fourth mode ( LP 04 ) in the presence of different external media. The line connecting the data points is solely a visual aid.

Tables (3)

Tables Icon

Table 1 LPG External Medium Refractive Index Sensitivity for Different Samples

Tables Icon

Table 2 LPG Coupling Thermo-Optic Coefficient for Different External Media

Tables Icon

Table 3 LPG Strain-Optic Coefficient and Strain Sensitivity for Different External Media

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ m = ( n e f f _ c o n e f f _ c l m ) Λ ,
Δ λ m λ m = ( α + β ) Δ T + ( 1 + p ) Δ ε ,
p = 1 n e f f _ c o n e f f _ c l m Δ ( n e f f _ c o n e f f _ c l m ) Δ ε .
β = 1 n e f f _ c o n e f f _ c l m Δ ( n e f f _ c o n e f f _ c l m ) Δ T .
Δ λ 0 u 2 λ 0 3 Λ 8 π 3 n c l ρ 3 [ 1 ( n c l 2 n e x 0 2 ) 1 / 2 1 ( n c l 2 n e x 2 ) 1 / 2 ] ,
RIS = d λ d n e x = u 2 λ 0 3 8 π 3 n c l Λ ρ 3 [ n e x ( n c l 2 n e x 2 ) 3 / 2 ] .
Δ λ = [ ( α + β ) λ 0 + γ ] Δ T ,
γ = u 2 λ 0 3 n e x Λ β s 8 π 3 ρ 3 { ( n c l 2 n e x 2 ) [ ( n c o 2 n c l 2 ) × ( a ρ ) 2 × ( J 0 2 ( u a / ρ ) + J 1 2 ( u a / ρ ) J 0 2 ( u ) + J 1 2 ( u ) ) + n c l 2 u 2 λ 0 2 4 π 2 ρ 2 ] + u 2 λ 0 3 4 π 3 ρ 3 ( n c l 2 n e x 2 ) 5 / 2 } 1 / 2 .

Metrics