Abstract

A chirped grating segmented into partitions each having a constant blaze angle to use in a demultiplexer for coarse wavelength division multiplexing with multimode optical fibers is developed. Its designed configuration utilizes a resonance region to achieve high diffraction efficiency and large dispersion. The width, blaze angle, and diffraction order of each partition were optimized by vector diffraction analysis. The diffraction loss of the manufactured grating was less than 1.5  dB, and polarization-dependent loss was less than 0 .6   dB within a wavelength width of at least 70   nm. It is confirmed that a demultiplexer with the developed chirped grating had a wide passband and low cross talk.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, "Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks," IEEE Photon. Technol. Lett. 14, 702-704 (2002).
    [CrossRef]
  2. H. Sasaki and Y. Okabe, "CWDM multi/demultiplexer consisting of stacked dielectric interference filters and off-axis diffractive lenses," IEEE Photon. Technol. Lett. 15, 551-553 (2003).
    [CrossRef]
  3. I. Nishi, T. Oguchi, and K. Kato, "Broad-passband-width optical filter for multi/demultiplexer using a diffraction grating and a retroreflector prism," Electron. Lett. 21, 423-424 (1985).
    [CrossRef]
  4. C. X. Yu, D. T. Neilson, C. R. Doerr, and M. Zirngibl, "Dispersion-free (De)mux with very high figure-of-merit," in Optical Fiber Communications Conference, 2002, TOPS Vol. 70 (Optical Society of America, 2002), pp. 318-319.
    [CrossRef]
  5. Y. Ishii and T. Kubota, "Wavelength demultiplexer in multimode fiber that uses optimized holographic optical elements," Appl. Opt. 32, 4415-4422 (1993).
    [CrossRef] [PubMed]
  6. T. Nakazawa, S. Kittaka, K. Tsunetomo, K. Kintaka, J. Nishii, and K. Hirao, "Compact and monolithic coarse wavelength-division multiplexer-demultiplexer fabricated by use of a high-spatial-frequency transmission grating buried in a slab waveguide," Opt. Lett. 29, 1188-1190 (2004).
    [CrossRef] [PubMed]
  7. Y. Fujii and J. Minowa, "Optical demultiplexer using a silicon concave diffraction grating," Appl. Opt. 22, 974-978 (1983).
    [CrossRef] [PubMed]
  8. T. Suhara, J. Viljanen, and M. Leppihalme, "Integrated-optic wavelength multi- and demultiplexers using a chirped grating and an ion-exchanged waveguide," Appl. Opt. 21, 2195-2198 (1982).
    [CrossRef] [PubMed]
  9. T. Shibata, T. Hoshino, H. Masuda, and Y. Sugimoto, Wavelength Division Demultiplexer for CWDM System, Technical Report of IEICE, OME2002-72, 35-39 (Institute of Electronics, Information, and Communication Engineers, 2002).
  10. K. Hirano, T. Sugita, H. Yasuda, T. Ushiwata, T. Abe, and Y. Itoh, "Coarse wavelength division demultiplexer using diffraction grating," in Proceedings of 30th European Conference on Optical Communication (ECOC2004) (Kista Photonics Research Center, Kista, Sweden, 2004), Tul.4.6 (2004).
  11. D. Maystre, M. Neviere, and R. Petit, Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 173-184.
  12. E. B. Champagne, "Nonparaxial imaging, magnification, and aberration properties in holography," J. Opt. Soc. Am. 57, 51-55 (1967).
    [CrossRef]
  13. D. Maystre, M. Neviere, and R. Petit, Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 63-100.
    [CrossRef]
  14. D. Palik, Handbook of Optical Constant of Solids (Academic, 1985), pp. 286-295.
  15. T. Sugita, K. Hirano, T. Abe, and Y. Itoh, "Aberration properties in a chirped grating for coarse wavelength division demultiplexing," Appl. Opt. 45, 5597-5606 (2006).
    [CrossRef] [PubMed]
  16. E. G. Loewen and E. Popov, Diffraction Gratings and Application (Marcel Dekker, 1997), pp. 296-297.

2006

2004

2003

H. Sasaki and Y. Okabe, "CWDM multi/demultiplexer consisting of stacked dielectric interference filters and off-axis diffractive lenses," IEEE Photon. Technol. Lett. 15, 551-553 (2003).
[CrossRef]

2002

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, "Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks," IEEE Photon. Technol. Lett. 14, 702-704 (2002).
[CrossRef]

1993

1985

I. Nishi, T. Oguchi, and K. Kato, "Broad-passband-width optical filter for multi/demultiplexer using a diffraction grating and a retroreflector prism," Electron. Lett. 21, 423-424 (1985).
[CrossRef]

1983

1982

1967

Abe, T.

T. Sugita, K. Hirano, T. Abe, and Y. Itoh, "Aberration properties in a chirped grating for coarse wavelength division demultiplexing," Appl. Opt. 45, 5597-5606 (2006).
[CrossRef] [PubMed]

K. Hirano, T. Sugita, H. Yasuda, T. Ushiwata, T. Abe, and Y. Itoh, "Coarse wavelength division demultiplexer using diffraction grating," in Proceedings of 30th European Conference on Optical Communication (ECOC2004) (Kista Photonics Research Center, Kista, Sweden, 2004), Tul.4.6 (2004).

Buckman, L. A.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, "Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks," IEEE Photon. Technol. Lett. 14, 702-704 (2002).
[CrossRef]

Champagne, E. B.

Doerr, C. R.

C. X. Yu, D. T. Neilson, C. R. Doerr, and M. Zirngibl, "Dispersion-free (De)mux with very high figure-of-merit," in Optical Fiber Communications Conference, 2002, TOPS Vol. 70 (Optical Society of America, 2002), pp. 318-319.
[CrossRef]

Fujii, Y.

Gong, W.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, "Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks," IEEE Photon. Technol. Lett. 14, 702-704 (2002).
[CrossRef]

Hirano, K.

T. Sugita, K. Hirano, T. Abe, and Y. Itoh, "Aberration properties in a chirped grating for coarse wavelength division demultiplexing," Appl. Opt. 45, 5597-5606 (2006).
[CrossRef] [PubMed]

K. Hirano, T. Sugita, H. Yasuda, T. Ushiwata, T. Abe, and Y. Itoh, "Coarse wavelength division demultiplexer using diffraction grating," in Proceedings of 30th European Conference on Optical Communication (ECOC2004) (Kista Photonics Research Center, Kista, Sweden, 2004), Tul.4.6 (2004).

Hirao, K.

Hoshino, T.

T. Shibata, T. Hoshino, H. Masuda, and Y. Sugimoto, Wavelength Division Demultiplexer for CWDM System, Technical Report of IEICE, OME2002-72, 35-39 (Institute of Electronics, Information, and Communication Engineers, 2002).

Ishii, Y.

Itoh, Y.

T. Sugita, K. Hirano, T. Abe, and Y. Itoh, "Aberration properties in a chirped grating for coarse wavelength division demultiplexing," Appl. Opt. 45, 5597-5606 (2006).
[CrossRef] [PubMed]

K. Hirano, T. Sugita, H. Yasuda, T. Ushiwata, T. Abe, and Y. Itoh, "Coarse wavelength division demultiplexer using diffraction grating," in Proceedings of 30th European Conference on Optical Communication (ECOC2004) (Kista Photonics Research Center, Kista, Sweden, 2004), Tul.4.6 (2004).

Kato, K.

I. Nishi, T. Oguchi, and K. Kato, "Broad-passband-width optical filter for multi/demultiplexer using a diffraction grating and a retroreflector prism," Electron. Lett. 21, 423-424 (1985).
[CrossRef]

Kintaka, K.

Kittaka, S.

Kubota, T.

Lemoff, B. E.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, "Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks," IEEE Photon. Technol. Lett. 14, 702-704 (2002).
[CrossRef]

Leppihalme, M.

Loewen, E. G.

E. G. Loewen and E. Popov, Diffraction Gratings and Application (Marcel Dekker, 1997), pp. 296-297.

Masuda, H.

T. Shibata, T. Hoshino, H. Masuda, and Y. Sugimoto, Wavelength Division Demultiplexer for CWDM System, Technical Report of IEICE, OME2002-72, 35-39 (Institute of Electronics, Information, and Communication Engineers, 2002).

Maystre, D.

D. Maystre, M. Neviere, and R. Petit, Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 173-184.

D. Maystre, M. Neviere, and R. Petit, Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 63-100.
[CrossRef]

Minowa, J.

Nakazawa, T.

Neilson, D. T.

C. X. Yu, D. T. Neilson, C. R. Doerr, and M. Zirngibl, "Dispersion-free (De)mux with very high figure-of-merit," in Optical Fiber Communications Conference, 2002, TOPS Vol. 70 (Optical Society of America, 2002), pp. 318-319.
[CrossRef]

Neviere, M.

D. Maystre, M. Neviere, and R. Petit, Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 63-100.
[CrossRef]

D. Maystre, M. Neviere, and R. Petit, Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 173-184.

Nishi, I.

I. Nishi, T. Oguchi, and K. Kato, "Broad-passband-width optical filter for multi/demultiplexer using a diffraction grating and a retroreflector prism," Electron. Lett. 21, 423-424 (1985).
[CrossRef]

Nishii, J.

Oguchi, T.

I. Nishi, T. Oguchi, and K. Kato, "Broad-passband-width optical filter for multi/demultiplexer using a diffraction grating and a retroreflector prism," Electron. Lett. 21, 423-424 (1985).
[CrossRef]

Okabe, Y.

H. Sasaki and Y. Okabe, "CWDM multi/demultiplexer consisting of stacked dielectric interference filters and off-axis diffractive lenses," IEEE Photon. Technol. Lett. 15, 551-553 (2003).
[CrossRef]

Palik, D.

D. Palik, Handbook of Optical Constant of Solids (Academic, 1985), pp. 286-295.

Petit, R.

D. Maystre, M. Neviere, and R. Petit, Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 173-184.

D. Maystre, M. Neviere, and R. Petit, Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 63-100.
[CrossRef]

Popov, E.

E. G. Loewen and E. Popov, Diffraction Gratings and Application (Marcel Dekker, 1997), pp. 296-297.

Sasaki, H.

H. Sasaki and Y. Okabe, "CWDM multi/demultiplexer consisting of stacked dielectric interference filters and off-axis diffractive lenses," IEEE Photon. Technol. Lett. 15, 551-553 (2003).
[CrossRef]

Schmit, A. J.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, "Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks," IEEE Photon. Technol. Lett. 14, 702-704 (2002).
[CrossRef]

Shibata, T.

T. Shibata, T. Hoshino, H. Masuda, and Y. Sugimoto, Wavelength Division Demultiplexer for CWDM System, Technical Report of IEICE, OME2002-72, 35-39 (Institute of Electronics, Information, and Communication Engineers, 2002).

Sugimoto, Y.

T. Shibata, T. Hoshino, H. Masuda, and Y. Sugimoto, Wavelength Division Demultiplexer for CWDM System, Technical Report of IEICE, OME2002-72, 35-39 (Institute of Electronics, Information, and Communication Engineers, 2002).

Sugita, T.

T. Sugita, K. Hirano, T. Abe, and Y. Itoh, "Aberration properties in a chirped grating for coarse wavelength division demultiplexing," Appl. Opt. 45, 5597-5606 (2006).
[CrossRef] [PubMed]

K. Hirano, T. Sugita, H. Yasuda, T. Ushiwata, T. Abe, and Y. Itoh, "Coarse wavelength division demultiplexer using diffraction grating," in Proceedings of 30th European Conference on Optical Communication (ECOC2004) (Kista Photonics Research Center, Kista, Sweden, 2004), Tul.4.6 (2004).

Suhara, T.

Tella, R. P.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, "Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks," IEEE Photon. Technol. Lett. 14, 702-704 (2002).
[CrossRef]

Tsunetomo, K.

Ushiwata, T.

K. Hirano, T. Sugita, H. Yasuda, T. Ushiwata, T. Abe, and Y. Itoh, "Coarse wavelength division demultiplexer using diffraction grating," in Proceedings of 30th European Conference on Optical Communication (ECOC2004) (Kista Photonics Research Center, Kista, Sweden, 2004), Tul.4.6 (2004).

Viljanen, J.

Yasuda, H.

K. Hirano, T. Sugita, H. Yasuda, T. Ushiwata, T. Abe, and Y. Itoh, "Coarse wavelength division demultiplexer using diffraction grating," in Proceedings of 30th European Conference on Optical Communication (ECOC2004) (Kista Photonics Research Center, Kista, Sweden, 2004), Tul.4.6 (2004).

Yu, C. X.

C. X. Yu, D. T. Neilson, C. R. Doerr, and M. Zirngibl, "Dispersion-free (De)mux with very high figure-of-merit," in Optical Fiber Communications Conference, 2002, TOPS Vol. 70 (Optical Society of America, 2002), pp. 318-319.
[CrossRef]

Zirngibl, M.

C. X. Yu, D. T. Neilson, C. R. Doerr, and M. Zirngibl, "Dispersion-free (De)mux with very high figure-of-merit," in Optical Fiber Communications Conference, 2002, TOPS Vol. 70 (Optical Society of America, 2002), pp. 318-319.
[CrossRef]

Appl. Opt.

Electron. Lett.

I. Nishi, T. Oguchi, and K. Kato, "Broad-passband-width optical filter for multi/demultiplexer using a diffraction grating and a retroreflector prism," Electron. Lett. 21, 423-424 (1985).
[CrossRef]

IEEE Photon. Technol. Lett.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, "Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks," IEEE Photon. Technol. Lett. 14, 702-704 (2002).
[CrossRef]

H. Sasaki and Y. Okabe, "CWDM multi/demultiplexer consisting of stacked dielectric interference filters and off-axis diffractive lenses," IEEE Photon. Technol. Lett. 15, 551-553 (2003).
[CrossRef]

J. Opt. Soc. Am.

Opt. Lett.

Other

D. Maystre, M. Neviere, and R. Petit, Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 63-100.
[CrossRef]

D. Palik, Handbook of Optical Constant of Solids (Academic, 1985), pp. 286-295.

E. G. Loewen and E. Popov, Diffraction Gratings and Application (Marcel Dekker, 1997), pp. 296-297.

C. X. Yu, D. T. Neilson, C. R. Doerr, and M. Zirngibl, "Dispersion-free (De)mux with very high figure-of-merit," in Optical Fiber Communications Conference, 2002, TOPS Vol. 70 (Optical Society of America, 2002), pp. 318-319.
[CrossRef]

T. Shibata, T. Hoshino, H. Masuda, and Y. Sugimoto, Wavelength Division Demultiplexer for CWDM System, Technical Report of IEICE, OME2002-72, 35-39 (Institute of Electronics, Information, and Communication Engineers, 2002).

K. Hirano, T. Sugita, H. Yasuda, T. Ushiwata, T. Abe, and Y. Itoh, "Coarse wavelength division demultiplexer using diffraction grating," in Proceedings of 30th European Conference on Optical Communication (ECOC2004) (Kista Photonics Research Center, Kista, Sweden, 2004), Tul.4.6 (2004).

D. Maystre, M. Neviere, and R. Petit, Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 173-184.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the demultiplexer.

Fig. 2
Fig. 2

Contour map of diffraction loss under the condition that TE and TM polarizations had the same diffraction efficiency.

Fig. 3
Fig. 3

Diffraction loss as a function of the difference from the blaze angle of the maximum diffraction efficiency calculated by scalar analysis.

Fig. 4
Fig. 4

Relationship between blaze angle and average diffraction efficiency of a partition with a constant width of 1 .5   mm centered on x = 0   mm .

Fig. 5
Fig. 5

Average diffraction efficiency as a function of partition width for the partition centered on x = 0   mm .

Fig. 6
Fig. 6

Wavefront of the specular reflection from the four partitions of the developed grating.

Fig. 7
Fig. 7

Average loss distribution in each partition of the developed grating at the wavelength of 1308   nm . Simulations show the values before and after blaze angle correction.

Fig. 8
Fig. 8

Diffraction loss as a function of groove depth. The insert shows the grating shape used for simulation.

Fig. 9
Fig. 9

Mean diffraction loss of a partition as a function of wavelength.

Fig. 10
Fig. 10

Diffraction loss as a function of grating position at 1308   nm .

Fig. 11
Fig. 11

Average diffraction loss in all partitions as a function of wavelength.

Fig. 12
Fig. 12

Transmission spectra of the four-channel demultiplexer.

Tables (1)

Tables Icon

Table 1 Design Specifications of the Partitions

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

1 R i = 1 R c + 1 m g 2  μ ( 1 R o 1 R r ) ,
sin θ i = sin θ c + 1 m g  μ ( sin θ o sin θ r ) .
1 m g λ 0 ( sin θ o sin θ r ) = m n d ,
p d θ i d λ R i λ p = m n d cos θ i R i λ p ,
α M D + Δ θ i R i + B λ p < p ,
Δ θ i m λ n d cos θ i 1 cos ϕ cos ϕ = p λ R λ p 1 cos ϕ cos ϕ .
B < ( 1 α D p M λ λ p 1 cos ϕ cos ϕ ) λ p .
M = R i d θ i R c d θ c = R i / cos θ i R c / cos θ c .
1 + R o R r = 2 sin θ o sin θ r .
η ( λ ) = { sin [ m π ( 1 cos i + cos θ cos ε d sin ε m λ ) ] m π ( 1 cos i + cos θ cos ε d sin ε m λ ) } 2 ,
λ B = n d m sin ε cos ( i ε ) .

Metrics