Abstract

Analysis of the optical intrinsic signal of an exposed cortex has been applied to measurement of functional brain activation. It is important for accurate measurement of concentration changes in oxygenated hemoglobin and deoxygenated hemoglobin to consider the wavelength dependence of the mean optical path lengths for the reflectance of cortical tissue. A method is proposed to experimentally estimate the wavelength dependence of the mean optical path length in cortical tissue from the multispectral reflectance of the exposed cortex without any additional instruments. The trend in the wavelength dependence of the mean optical path length estimated by the proposed method agrees with that estimated by the model-based prediction, whereas the magnitude of the wavelength dependence predicted by the proposed method is greater than that of the model-based prediction. The experimentally predicted mean optical path length minimizes the difference in the measured changes in the concentrations of the oxygenated hemoglobin and deoxygenated hemoglobin calculated from different wavelength pairs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Frosting, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, "Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals," Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
    [CrossRef]
  2. S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, "Imaging optical reflectance in rodent barrel and forelimb sensory cortex," Neuroimage 1, 181-190 (1994).
    [CrossRef] [PubMed]
  3. I. Takashima, R. Kajiwara, and T. Iijima, "Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex," NeuroReport 12, 2889-2894 (2001).
    [CrossRef] [PubMed]
  4. S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
    [CrossRef] [PubMed]
  5. D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. Natl. Acad. Sci. USA 94, 14826-14831 (1997).
    [CrossRef]
  6. I. Vanzetta and A. Grinvald, "Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging," Science 286, 1555-1558 (1999).
    [CrossRef] [PubMed]
  7. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
    [CrossRef] [PubMed]
  8. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
    [CrossRef] [PubMed]
  9. J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-326 (1999).
    [CrossRef] [PubMed]
  10. M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-3764 (2000).
    [CrossRef] [PubMed]
  11. J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, "Spectroscopic analysis of neural activation in brain: increased oxygen consumption following activation of barrel cortex," Neuroimage 12, 664-675 (2000).
    [CrossRef] [PubMed]
  12. A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
    [CrossRef] [PubMed]
  13. U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
    [CrossRef] [PubMed]
  14. K. Yokoyama, M. Watanabe, Y. Watanabe, and E. Okada, "Interpretation of principal components of the reflectance spectra obtained from multi-spectral images of exposed pig brain," J. Biomed. Opt. 10, 011005 (2005).
    [CrossRef] [PubMed]
  15. P. van der Zee, "Measurement and modeling of the optical properties of human tissue in the near-infrared," Ph.D. dissertation (University College London, 1992).
  16. P. van der Zee and D. T. Delpy, "Simulation of the point spread function for light in tissue by a Monte Carlo technique," Adv. Exp. Med. Biol. 215, 179-191 (1987).
    [PubMed]

2005 (4)

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
[CrossRef] [PubMed]

K. Yokoyama, M. Watanabe, Y. Watanabe, and E. Okada, "Interpretation of principal components of the reflectance spectra obtained from multi-spectral images of exposed pig brain," J. Biomed. Opt. 10, 011005 (2005).
[CrossRef] [PubMed]

2003 (1)

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

2001 (2)

I. Takashima, R. Kajiwara, and T. Iijima, "Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex," NeuroReport 12, 2889-2894 (2001).
[CrossRef] [PubMed]

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

2000 (2)

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-3764 (2000).
[CrossRef] [PubMed]

J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, "Spectroscopic analysis of neural activation in brain: increased oxygen consumption following activation of barrel cortex," Neuroimage 12, 664-675 (2000).
[CrossRef] [PubMed]

1999 (2)

I. Vanzetta and A. Grinvald, "Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging," Science 286, 1555-1558 (1999).
[CrossRef] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-326 (1999).
[CrossRef] [PubMed]

1997 (1)

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. Natl. Acad. Sci. USA 94, 14826-14831 (1997).
[CrossRef]

1994 (1)

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, "Imaging optical reflectance in rodent barrel and forelimb sensory cortex," Neuroimage 1, 181-190 (1994).
[CrossRef] [PubMed]

1990 (1)

R. D. Frosting, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, "Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals," Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef]

1987 (1)

P. van der Zee and D. T. Delpy, "Simulation of the point spread function for light in tissue by a Monte Carlo technique," Adv. Exp. Med. Biol. 215, 179-191 (1987).
[PubMed]

Andermann, M. L.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Askew, S.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-326 (1999).
[CrossRef] [PubMed]

Berwick, J.

J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, "Spectroscopic analysis of neural activation in brain: increased oxygen consumption following activation of barrel cortex," Neuroimage 12, 664-675 (2000).
[CrossRef] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-326 (1999).
[CrossRef] [PubMed]

Blood, A. J.

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, "Imaging optical reflectance in rodent barrel and forelimb sensory cortex," Neuroimage 1, 181-190 (1994).
[CrossRef] [PubMed]

Boas, D. A.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Burton, J. S.

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, "Imaging optical reflectance in rodent barrel and forelimb sensory cortex," Neuroimage 1, 181-190 (1994).
[CrossRef] [PubMed]

Coffey, P.

J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, "Spectroscopic analysis of neural activation in brain: increased oxygen consumption following activation of barrel cortex," Neuroimage 12, 664-675 (2000).
[CrossRef] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-326 (1999).
[CrossRef] [PubMed]

Dale, A. M.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Delpy, D. T.

P. van der Zee and D. T. Delpy, "Simulation of the point spread function for light in tissue by a Monte Carlo technique," Adv. Exp. Med. Biol. 215, 179-191 (1987).
[PubMed]

Devor, A.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Dirnagl, U.

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-3764 (2000).
[CrossRef] [PubMed]

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. Natl. Acad. Sci. USA 94, 14826-14831 (1997).
[CrossRef]

Dunn, A. K.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Frosting, R. D.

R. D. Frosting, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, "Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals," Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef]

Gethmann, J.

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

Gold, L.

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-3764 (2000).
[CrossRef] [PubMed]

Grinvald, A.

I. Vanzetta and A. Grinvald, "Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging," Science 286, 1555-1558 (1999).
[CrossRef] [PubMed]

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. Natl. Acad. Sci. USA 94, 14826-14831 (1997).
[CrossRef]

R. D. Frosting, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, "Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals," Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef]

Guiou, M. W.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

Hou, Y.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-326 (1999).
[CrossRef] [PubMed]

Iijima, T.

I. Takashima, R. Kajiwara, and T. Iijima, "Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex," NeuroReport 12, 2889-2894 (2001).
[CrossRef] [PubMed]

Johnston, D.

J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, "Spectroscopic analysis of neural activation in brain: increased oxygen consumption following activation of barrel cortex," Neuroimage 12, 664-675 (2000).
[CrossRef] [PubMed]

Jones, M.

J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, "Spectroscopic analysis of neural activation in brain: increased oxygen consumption following activation of barrel cortex," Neuroimage 12, 664-675 (2000).
[CrossRef] [PubMed]

Jones, S. R.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
[CrossRef] [PubMed]

Kajiwara, R.

I. Takashima, R. Kajiwara, and T. Iijima, "Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex," NeuroReport 12, 2889-2894 (2001).
[CrossRef] [PubMed]

Kanno, I.

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. Natl. Acad. Sci. USA 94, 14826-14831 (1997).
[CrossRef]

Kohl, M.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-3764 (2000).
[CrossRef] [PubMed]

Kohl-Bareis, M.

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

Kuhl, M.

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

Kühl, M.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-3764 (2000).
[CrossRef] [PubMed]

Leithner, C.

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

Lieke, E. E.

R. D. Frosting, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, "Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals," Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef]

Lindauer, U.

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-3764 (2000).
[CrossRef] [PubMed]

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. Natl. Acad. Sci. USA 94, 14826-14831 (1997).
[CrossRef]

Malonek, D.

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. Natl. Acad. Sci. USA 94, 14826-14831 (1997).
[CrossRef]

Mayhew, J.

J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, "Spectroscopic analysis of neural activation in brain: increased oxygen consumption following activation of barrel cortex," Neuroimage 12, 664-675 (2000).
[CrossRef] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-326 (1999).
[CrossRef] [PubMed]

Narayan, S. M.

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, "Imaging optical reflectance in rodent barrel and forelimb sensory cortex," Neuroimage 1, 181-190 (1994).
[CrossRef] [PubMed]

Narayanan, S. N.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
[CrossRef] [PubMed]

Nemoto, M.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

Okada, E.

K. Yokoyama, M. Watanabe, Y. Watanabe, and E. Okada, "Interpretation of principal components of the reflectance spectra obtained from multi-spectral images of exposed pig brain," J. Biomed. Opt. 10, 011005 (2005).
[CrossRef] [PubMed]

Royl, G.

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-3764 (2000).
[CrossRef] [PubMed]

Santori, E. M.

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, "Imaging optical reflectance in rodent barrel and forelimb sensory cortex," Neuroimage 1, 181-190 (1994).
[CrossRef] [PubMed]

Sheth, S. A.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

Takashima, I.

I. Takashima, R. Kajiwara, and T. Iijima, "Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex," NeuroReport 12, 2889-2894 (2001).
[CrossRef] [PubMed]

Toga, A. W.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, "Imaging optical reflectance in rodent barrel and forelimb sensory cortex," Neuroimage 1, 181-190 (1994).
[CrossRef] [PubMed]

Ts'o, D. Y.

R. D. Frosting, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, "Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals," Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef]

Ulbert, I.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

van der Zee, P.

P. van der Zee and D. T. Delpy, "Simulation of the point spread function for light in tissue by a Monte Carlo technique," Adv. Exp. Med. Biol. 215, 179-191 (1987).
[PubMed]

P. van der Zee, "Measurement and modeling of the optical properties of human tissue in the near-infrared," Ph.D. dissertation (University College London, 1992).

Vanzetta, I.

I. Vanzetta and A. Grinvald, "Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging," Science 286, 1555-1558 (1999).
[CrossRef] [PubMed]

Villringer, A.

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-3764 (2000).
[CrossRef] [PubMed]

Vuksanovic, B.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-326 (1999).
[CrossRef] [PubMed]

Walker, M. A.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

Watanabe, M.

K. Yokoyama, M. Watanabe, Y. Watanabe, and E. Okada, "Interpretation of principal components of the reflectance spectra obtained from multi-spectral images of exposed pig brain," J. Biomed. Opt. 10, 011005 (2005).
[CrossRef] [PubMed]

Watanabe, Y.

K. Yokoyama, M. Watanabe, Y. Watanabe, and E. Okada, "Interpretation of principal components of the reflectance spectra obtained from multi-spectral images of exposed pig brain," J. Biomed. Opt. 10, 011005 (2005).
[CrossRef] [PubMed]

Yamada, K.

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. Natl. Acad. Sci. USA 94, 14826-14831 (1997).
[CrossRef]

Yokoyama, K.

K. Yokoyama, M. Watanabe, Y. Watanabe, and E. Okada, "Interpretation of principal components of the reflectance spectra obtained from multi-spectral images of exposed pig brain," J. Biomed. Opt. 10, 011005 (2005).
[CrossRef] [PubMed]

Zheng, Y.

J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, "Spectroscopic analysis of neural activation in brain: increased oxygen consumption following activation of barrel cortex," Neuroimage 12, 664-675 (2000).
[CrossRef] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-326 (1999).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (1)

P. van der Zee and D. T. Delpy, "Simulation of the point spread function for light in tissue by a Monte Carlo technique," Adv. Exp. Med. Biol. 215, 179-191 (1987).
[PubMed]

J. Biomed. Opt. (1)

K. Yokoyama, M. Watanabe, Y. Watanabe, and E. Okada, "Interpretation of principal components of the reflectance spectra obtained from multi-spectral images of exposed pig brain," J. Biomed. Opt. 10, 011005 (2005).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005).
[CrossRef] [PubMed]

Neuroimage (5)

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, "Imaging optical reflectance in rodent barrel and forelimb sensory cortex," Neuroimage 1, 181-190 (1994).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005).
[CrossRef] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-326 (1999).
[CrossRef] [PubMed]

J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, "Spectroscopic analysis of neural activation in brain: increased oxygen consumption following activation of barrel cortex," Neuroimage 12, 664-675 (2000).
[CrossRef] [PubMed]

U. Lindauer, G. Royl, C. Leithner, M. Kuhl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, "No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation," Neuroimage 13, 988-1001 (2001).
[CrossRef] [PubMed]

Neuron (1)

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

NeuroReport (1)

I. Takashima, R. Kajiwara, and T. Iijima, "Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex," NeuroReport 12, 2889-2894 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-3764 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (3)

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. Natl. Acad. Sci. USA 94, 14826-14831 (1997).
[CrossRef]

R. D. Frosting, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, "Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals," Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef]

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, "Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity," Proc. Natl. Acad. Sci. USA 102, 3822-3827 (2005).
[CrossRef] [PubMed]

Science (1)

I. Vanzetta and A. Grinvald, "Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging," Science 286, 1555-1558 (1999).
[CrossRef] [PubMed]

Other (1)

P. van der Zee, "Measurement and modeling of the optical properties of human tissue in the near-infrared," Ph.D. dissertation (University College London, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Molar extinction coefficients of oxygenated hemoglobin and deoxygenated hemoglobin. The gray lines indicate the central wavelengths of four narrowband filters to acquire multispectral images.

Fig. 2
Fig. 2

Image of the cortical tissue of a guinea pig at 540 nm wavelength. The square in the image represents the probing area of the optical intrinsic signal measurement.

Fig. 3
Fig. 3

Changes in reflectance for the four wavelengths caused by (a) auditory stimulations and (b), (c), (d) wavelength-dependent path-length factor WPF(λ) for the 510, 560, and 580 nm wavelengths obtained from the change in reflectance.

Fig. 4
Fig. 4

Sets of the wavelength-dependent path-length factor WPF(λ) for the 510, 560, and 580 nm wavelengths that minimize the sum of squares of (a) the difference E and (b) the corresponding standard deviation of the ratio of the concentration changes σ.

Fig. 5
Fig. 5

Wavelength-dependent path-length factor WPF(λ) obtained by the experimental prediction and the model-based prediction.

Fig. 6
Fig. 6

Time courses of the changes in the concentrations of oxy-Hb and deoxy-Hb evoked by the auditory stimulations calculated using (a) the wavelength-independent constant, (b) the WPF(λ) obtained by the model-based prediction, and (c) the WPF(λ) obtained by the proposed experimental prediction.

Fig. 7
Fig. 7

Time courses of the changes in the concentrations of oxy-Hb and deoxy-Hb evoked by the auditory stimulations calculated using (a) the wavelength-independent constant, (b) the WPF(λ) obtained by the model-based prediction, and (c) the WPF(λ) obtained by the proposed experimental prediction.

Fig. 8
Fig. 8

Concentration changes in oxy-Hb and deoxy-Hb calculated from the changes in the reflectance, which is theoretically obtained from WPF(λ) estimated by the experimental prediction by using the wavelength-independent constant and WPF(λ) estimated by the model-based prediction. Either concentration of oxy-Hb or deoxy-Hb is assumed to increase by 10 μM .

Tables (1)

Tables Icon

Table 1 Optical Properties of the Cortical Model

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ R ( λ , t ) = ln [ R b a s e ( λ , t 0 ) / R ( λ , t ) ] = [ ε o x y ( λ ) Δ c o x y ( t ) + ε d e o x y ( λ ) Δ c d e o x y ( t ) ] l ( λ ) ,
Δ c o x y * ( λ 1 , λ 2 , t ) l ( λ 0 ) = Δ R ( λ 1 , t ) ε d e o x y ( λ 2 ) WPF ( λ 2 ) Δ R ( λ 2 , t ) ε d e o x y ( λ 1 ) WPF ( λ 1 ) { ε o x y ( λ 1 ) ε d e o x y ( λ 2 ) ε o x y ( λ 2 ) ε d e o x y ( λ 1 ) } WPF ( λ 1 ) WPF ( λ 2 ) ,
Δ c d e o x y * ( λ 1 , λ 2 , t ) l ( λ 0 ) = Δ R ( λ 2 , t ) ε o x y ( λ 1 ) WPF ( λ 1 ) Δ R ( λ 1 , t ) ε o x y ( λ 2 ) WPF ( λ 2 ) { ε o x y ( λ 1 ) ε d e o x y ( λ 2 ) ε o x y ( λ 2 ) ε d e o x y ( λ 1 ) } WPF ( λ 1 ) WPF ( λ 2 ) ,
WPF ( λ ) = l ( λ ) l ( λ 0 ) ,
E = [ Δ c o x y ( 510 , 540 ) Δ c o x y ( 540 , 560 ) ] 2 + ( Δ c o x y ( 560 , 580 ) Δ c o x y ( 540 , 560 ) ) 2 + [ Δ c o x y ( 510 , 580 ) Δ c o x y ( 540 , 560 ) ] 2 + ( Δ c d e o x y ( 510 , 540 ) Δ c d e o x y ( 540 , 560 ) ) 2 + [ Δ c d e o x y ( 560 , 580 ) Δ c d e o x y ( 540 , 560 ) ] 2 + [ Δ c d e o x y ( 510 , 580 ) Δ c d e o x y ( 540 , 560 ) ] 2 .
σ ( WPF ( 510 ) , WPF ( 560 ) , WPF ( 580 ) ) = ( Δ c d e o x y ( WPF ( λ i ) , WPF ( λ j ) ) / Δ c o x y ( WPF ( λ i ) , WPF ( λ j ) ) Δ c d e o x y / Δ c o x y ) 2 Δ c d e o x y / Δ c o x y ,

Metrics