Abstract

We characterize the capabilities and limitations of the Living Image Software 3D Analysis package (Xenogen, Alameda, California) in the reconstruction of calibrated light sources. Sources shallower than the mean free path of light propagation suffered reconstruction inaccuracy. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively, for homogeneous tissue. The reconstruction of luminescent beads implanted within an optically heterogeneous mouse abdomen proved less accurate. The ability to distinguish multiple sources decreased with increasing source depth. A number of factors influence the accuracy of light source reconstruction.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. D. McElroy, H. H. Seliger, and E. H. White, "Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin," Photochem. Photobiol. 10, 153-170 (1969).
  2. L. J. Kricka, J. Stroebel, and P. E. Stanley, "Bioluminescent fusion conjugates and bioluminescent immunoassays: 1988-1998," Luminescence 14, 39-46 (1999).
    [CrossRef]
  3. C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).
  4. M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
    [CrossRef]
  5. A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000).
    [CrossRef]
  6. C. H. Contag and M. H. Bachmann, "Advances in in vivo bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
    [CrossRef]
  7. C. H. Contag and B. D. Ross, "It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology," J. Magn. Reson. Imaging 16, 378-387 (2002).
    [CrossRef]
  8. J. F. Mercier, A. Salahpour, S. Angers, A. Breit, and M. Bouvier, "Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer," J. Biol. Chem. 277, 44925-44931 (2002).
    [CrossRef]
  9. G. R. Rettig, M. McAnuff, D. Liu, J. S. Kim, and K. G. Rice, "Quantitative bioluminescence imaging of transgene expression in vivo," Anal Biochem. 355, 90-94 (2006).
    [CrossRef]
  10. Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004).
    [CrossRef]
  11. J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. Jansen, "Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants," Mol. Imaging 3, 333-342 (2004).
    [CrossRef]
  12. S. Li, Q. Zhang, and H. Jiang, "Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments," Appl Opt. 45, 3390-3394 (2006).
    [CrossRef]
  13. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system," Phys. Med. Biol. 51, 2045-2053 (2006).
    [CrossRef]
  14. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt Lett. 31, 365-367 (2006).
    [CrossRef]
  15. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
    [CrossRef]
  16. X. J. Gu, Q. H. Zhang, L. Larcom, and H. B. Jiang, "Three-dimensional bioluminescence tomography with model-based reconstruction," Opt. Express 12, 3996-4000 (2004).
    [CrossRef]
  17. H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).
    [CrossRef]
  18. A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opin. Biotechnol. 16, 79-88 (2005).
    [CrossRef]
  19. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
    [CrossRef]
  20. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
    [CrossRef]
  21. G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289-2299 (2004).
    [CrossRef]
  22. G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
    [CrossRef]
  23. B. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light-emitting probes," J. Biomed. Opt. 6, 432-440 (2001).
    [CrossRef]
  24. C. Kuo, H. Ahsan, J. Hunter, T. L. Troy, H. Xu, N. Zhang, and B. W. Rice, "In vivo bioluminescent tomography using multispectral and multiperspective image data," in OSA Technical Digest on Biomedical Optics (Optical Society of America, 2006), paper TuG4.
  25. O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging technique," in Genetically Engineered and Optical Probes for Biomedical Applications, A. P. Savitsky, P. J. Bernhop, R. Raghavachari, and S. I. Achilefu, eds., Proc. SPIE 4967, 37-45 (2003).
    [CrossRef]
  26. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multi-spectral imaging," J. Biomed. Opt. (to be published).
  27. G. Marquez, L. H. V. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Opt. 37, 798-804 (1998).
  28. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999).
  29. D. C. Comsa, T. J. Farrell, and M. S. Patterson, "Quantification of bioluminescence images of point source objects using diffusion theory models," Phys. Med. Biol. 51, 3733-3746 (2006).
    [CrossRef]
  30. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
    [CrossRef]
  31. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]
  32. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, "Three-dimensional optical tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003).
  33. W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
    [CrossRef]
  34. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef]

2006

G. R. Rettig, M. McAnuff, D. Liu, J. S. Kim, and K. G. Rice, "Quantitative bioluminescence imaging of transgene expression in vivo," Anal Biochem. 355, 90-94 (2006).
[CrossRef]

S. Li, Q. Zhang, and H. Jiang, "Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments," Appl Opt. 45, 3390-3394 (2006).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system," Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef]

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt Lett. 31, 365-367 (2006).
[CrossRef]

D. C. Comsa, T. J. Farrell, and M. S. Patterson, "Quantification of bioluminescence images of point source objects using diffusion theory models," Phys. Med. Biol. 51, 3733-3746 (2006).
[CrossRef]

2005

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
[CrossRef]

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opin. Biotechnol. 16, 79-88 (2005).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef]

2004

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289-2299 (2004).
[CrossRef]

X. J. Gu, Q. H. Zhang, L. Larcom, and H. B. Jiang, "Three-dimensional bioluminescence tomography with model-based reconstruction," Opt. Express 12, 3996-4000 (2004).
[CrossRef]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef]

Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004).
[CrossRef]

J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. Jansen, "Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants," Mol. Imaging 3, 333-342 (2004).
[CrossRef]

2003

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging technique," in Genetically Engineered and Optical Probes for Biomedical Applications, A. P. Savitsky, P. J. Bernhop, R. Raghavachari, and S. I. Achilefu, eds., Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, "Three-dimensional optical tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003).

2002

C. H. Contag and M. H. Bachmann, "Advances in in vivo bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef]

C. H. Contag and B. D. Ross, "It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology," J. Magn. Reson. Imaging 16, 378-387 (2002).
[CrossRef]

J. F. Mercier, A. Salahpour, S. Angers, A. Breit, and M. Bouvier, "Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer," J. Biol. Chem. 277, 44925-44931 (2002).
[CrossRef]

M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

2001

B. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light-emitting probes," J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef]

2000

A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000).
[CrossRef]

1999

L. J. Kricka, J. Stroebel, and P. E. Stanley, "Bioluminescent fusion conjugates and bioluminescent immunoassays: 1988-1998," Luminescence 14, 39-46 (1999).
[CrossRef]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999).

1998

1997

C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).

1990

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

1969

W. D. McElroy, H. H. Seliger, and E. H. White, "Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin," Photochem. Photobiol. 10, 153-170 (1969).

Ahsan, H.

C. Kuo, H. Ahsan, J. Hunter, T. L. Troy, H. Xu, N. Zhang, and B. W. Rice, "In vivo bioluminescent tomography using multispectral and multiperspective image data," in OSA Technical Digest on Biomedical Optics (Optical Society of America, 2006), paper TuG4.

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system," Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef]

Angers, S.

J. F. Mercier, A. Salahpour, S. Angers, A. Breit, and M. Bouvier, "Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer," J. Biol. Chem. 277, 44925-44931 (2002).
[CrossRef]

Antich, P. P.

Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004).
[CrossRef]

Bachmann, M. H.

C. H. Contag and M. H. Bachmann, "Advances in in vivo bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef]

M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
[CrossRef]

Bading, J. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Benaron, D. A.

C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).

Bevilacqua, F.

Bollinger, R. A.

Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004).
[CrossRef]

Bouvier, M.

J. F. Mercier, A. Salahpour, S. Angers, A. Breit, and M. Bouvier, "Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer," J. Biol. Chem. 277, 44925-44931 (2002).
[CrossRef]

Braasch, D. A.

Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004).
[CrossRef]

Breit, A.

J. F. Mercier, A. Salahpour, S. Angers, A. Breit, and M. Bouvier, "Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer," J. Biol. Chem. 277, 44925-44931 (2002).
[CrossRef]

Bremer, C.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Brooksby, B.

Cable, M. D.

B. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light-emitting probes," J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef]

Cao, Y. A.

M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
[CrossRef]

Cardozo, S. J.

A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000).
[CrossRef]

Chatziioannou, A. F.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system," Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef]

Chaudhari, A. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Chen, Z.

J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. Jansen, "Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants," Mol. Imaging 3, 333-342 (2004).
[CrossRef]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Cherry, S. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Comsa, D. C.

D. C. Comsa, T. J. Farrell, and M. S. Patterson, "Quantification of bioluminescence images of point source objects using diffusion theory models," Phys. Med. Biol. 51, 3733-3746 (2006).
[CrossRef]

Cong, A.

Cong, W.

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef]

Cong, W. X.

Contag, C. H.

C. H. Contag and M. H. Bachmann, "Advances in in vivo bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef]

M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
[CrossRef]

C. H. Contag and B. D. Ross, "It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology," J. Magn. Reson. Imaging 16, 378-387 (2002).
[CrossRef]

A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000).
[CrossRef]

C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).

Contag, P. R.

C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).

Conti, P. S.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Coquoz, O.

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging technique," in Genetically Engineered and Optical Probes for Biomedical Applications, A. P. Savitsky, P. J. Bernhop, R. Raghavachari, and S. I. Achilefu, eds., Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multi-spectral imaging," J. Biomed. Opt. (to be published).

Corey, D. R.

Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004).
[CrossRef]

Darvas, F.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Davis, S. C.

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt Lett. 31, 365-367 (2006).
[CrossRef]

Dehghani, H.

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt Lett. 31, 365-367 (2006).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, "Three-dimensional optical tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003).

Dennery, P.

C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).

Depeursinge, C.

Eames, B.

C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).

Edinger, M.

M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
[CrossRef]

Farrell, T. J.

D. C. Comsa, T. J. Farrell, and M. S. Patterson, "Quantification of bioluminescence images of point source objects using diffusion theory models," Phys. Med. Biol. 51, 3733-3746 (2006).
[CrossRef]

Fowler, M.

J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. Jansen, "Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants," Mol. Imaging 3, 333-342 (2004).
[CrossRef]

Gambhir, S. S.

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef]

Graves, E. E.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Grimm, J.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
[CrossRef]

Gross, J. D.

Gu, X. J.

Gupta, S.

A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000).
[CrossRef]

Hall, D. E.

A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000).
[CrossRef]

Hielscher, A. H.

A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opin. Biotechnol. 16, 79-88 (2005).
[CrossRef]

Hoffman, E. A.

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef]

Hornig, Y. S.

M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
[CrossRef]

Hunter, J.

C. Kuo, H. Ahsan, J. Hunter, T. L. Troy, H. Xu, N. Zhang, and B. W. Rice, "In vivo bioluminescent tomography using multispectral and multiperspective image data," in OSA Technical Digest on Biomedical Optics (Optical Society of America, 2006), paper TuG4.

Jansen, E. D.

J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. Jansen, "Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants," Mol. Imaging 3, 333-342 (2004).
[CrossRef]

Jekic-McMullen, D.

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging technique," in Genetically Engineered and Optical Probes for Biomedical Applications, A. P. Savitsky, P. J. Bernhop, R. Raghavachari, and S. I. Achilefu, eds., Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

Jenkins, D. E.

M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
[CrossRef]

Jiang, H.

S. Li, Q. Zhang, and H. Jiang, "Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments," Appl Opt. 45, 3390-3394 (2006).
[CrossRef]

Jiang, H. B.

Jiang, M.

Jiang, S.

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt Lett. 31, 365-367 (2006).
[CrossRef]

Kambara, H.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
[CrossRef]

Kim, J. S.

G. R. Rettig, M. McAnuff, D. Liu, J. S. Kim, and K. G. Rice, "Quantitative bioluminescence imaging of transgene expression in vivo," Anal Biochem. 355, 90-94 (2006).
[CrossRef]

Kricka, L. J.

L. J. Kricka, J. Stroebel, and P. E. Stanley, "Bioluminescent fusion conjugates and bioluminescent immunoassays: 1988-1998," Luminescence 14, 39-46 (1999).
[CrossRef]

Kumar, D.

Kuo, C.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multi-spectral imaging," J. Biomed. Opt. (to be published).

C. Kuo, H. Ahsan, J. Hunter, T. L. Troy, H. Xu, N. Zhang, and B. W. Rice, "In vivo bioluminescent tomography using multispectral and multiperspective image data," in OSA Technical Digest on Biomedical Optics (Optical Society of America, 2006), paper TuG4.

Larcom, L.

Leahy, R. M.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Li, H.

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef]

Li, S.

S. Li, Q. Zhang, and H. Jiang, "Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments," Appl Opt. 45, 3390-3394 (2006).
[CrossRef]

Li, Y.

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289-2299 (2004).
[CrossRef]

Lin, S. P.

Liu, D.

G. R. Rettig, M. McAnuff, D. Liu, J. S. Kim, and K. G. Rice, "Quantitative bioluminescence imaging of transgene expression in vivo," Anal Biochem. 355, 90-94 (2006).
[CrossRef]

Liu, Y.

Marquet, P.

Marquez, G.

Mason, R. P.

Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004).
[CrossRef]

Massoud, T. F.

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef]

McAnuff, M.

G. R. Rettig, M. McAnuff, D. Liu, J. S. Kim, and K. G. Rice, "Quantitative bioluminescence imaging of transgene expression in vivo," Anal Biochem. 355, 90-94 (2006).
[CrossRef]

McCray, P. B.

McElroy, W. D.

W. D. McElroy, H. H. Seliger, and E. H. White, "Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin," Photochem. Photobiol. 10, 153-170 (1969).

McLennan, G.

Mercier, J. F.

J. F. Mercier, A. Salahpour, S. Angers, A. Breit, and M. Bouvier, "Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer," J. Biol. Chem. 277, 44925-44931 (2002).
[CrossRef]

Moats, R. A.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Negrin, R. S.

M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
[CrossRef]

Nelson, M. B.

B. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light-emitting probes," J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef]

Ntziachristos, V.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Oshiro, M.

C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).

Paroo, Z.

Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004).
[CrossRef]

Patterson, M. S.

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt Lett. 31, 365-367 (2006).
[CrossRef]

D. C. Comsa, T. J. Farrell, and M. S. Patterson, "Quantification of bioluminescence images of point source objects using diffusion theory models," Phys. Med. Biol. 51, 3733-3746 (2006).
[CrossRef]

Paulsen, K. D.

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt Lett. 31, 365-367 (2006).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, "Three-dimensional optical tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003).

Piguet, D.

Poffenberger, G.

J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. Jansen, "Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants," Mol. Imaging 3, 333-342 (2004).
[CrossRef]

Pogue, B. W.

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt Lett. 31, 365-367 (2006).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, "Three-dimensional optical tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003).

Powers, A. C.

J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. Jansen, "Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants," Mol. Imaging 3, 333-342 (2004).
[CrossRef]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system," Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef]

Rehemtulla, A.

A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000).
[CrossRef]

Rettig, G. R.

G. R. Rettig, M. McAnuff, D. Liu, J. S. Kim, and K. G. Rice, "Quantitative bioluminescence imaging of transgene expression in vivo," Anal Biochem. 355, 90-94 (2006).
[CrossRef]

Rice, B. W.

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging technique," in Genetically Engineered and Optical Probes for Biomedical Applications, A. P. Savitsky, P. J. Bernhop, R. Raghavachari, and S. I. Achilefu, eds., Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

B. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light-emitting probes," J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef]

C. Kuo, H. Ahsan, J. Hunter, T. L. Troy, H. Xu, N. Zhang, and B. W. Rice, "In vivo bioluminescent tomography using multispectral and multiperspective image data," in OSA Technical Digest on Biomedical Optics (Optical Society of America, 2006), paper TuG4.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multi-spectral imaging," J. Biomed. Opt. (to be published).

Rice, K. G.

G. R. Rettig, M. McAnuff, D. Liu, J. S. Kim, and K. G. Rice, "Quantitative bioluminescence imaging of transgene expression in vivo," Anal Biochem. 355, 90-94 (2006).
[CrossRef]

Richer, E.

Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004).
[CrossRef]

Ripoll, J.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Ross, B. D.

C. H. Contag and B. D. Ross, "It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology," J. Magn. Reson. Imaging 16, 378-387 (2002).
[CrossRef]

A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000).
[CrossRef]

Saeki, Y.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
[CrossRef]

Salahpour, A.

J. F. Mercier, A. Salahpour, S. Angers, A. Breit, and M. Bouvier, "Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer," J. Biol. Chem. 277, 44925-44931 (2002).
[CrossRef]

Schwartz, J. A.

Seliger, H. H.

W. D. McElroy, H. H. Seliger, and E. H. White, "Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin," Photochem. Photobiol. 10, 153-170 (1969).

Shih, H.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
[CrossRef]

Shudong, J.

Smith, D. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

Spilman, S. D.

C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).

Stanley, P. E.

L. J. Kricka, J. Stroebel, and P. E. Stanley, "Bioluminescent fusion conjugates and bioluminescent immunoassays: 1988-1998," Luminescence 14, 39-46 (1999).
[CrossRef]

Stegman, L. D.

A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000).
[CrossRef]

Stevenson, D. K.

C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).

Stroebel, J.

L. J. Kricka, J. Stroebel, and P. E. Stanley, "Bioluminescent fusion conjugates and bioluminescent immunoassays: 1988-1998," Luminescence 14, 39-46 (1999).
[CrossRef]

Thomsen, S. L.

Tian, J.

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef]

Tromberg, B. J.

Troy, T. L.

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging technique," in Genetically Engineered and Optical Probes for Biomedical Applications, A. P. Savitsky, P. J. Bernhop, R. Raghavachari, and S. I. Achilefu, eds., Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

C. Kuo, H. Ahsan, J. Hunter, T. L. Troy, H. Xu, N. Zhang, and B. W. Rice, "In vivo bioluminescent tomography using multispectral and multiperspective image data," in OSA Technical Digest on Biomedical Optics (Optical Society of America, 2006), paper TuG4.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multi-spectral imaging," J. Biomed. Opt. (to be published).

Verneris, M. R.

M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
[CrossRef]

Virostko, J.

J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. Jansen, "Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants," Mol. Imaging 3, 333-342 (2004).
[CrossRef]

Wang, G.

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef]

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289-2299 (2004).
[CrossRef]

Wang, L. H. V.

Wang, L. V.

W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef]

Weissleder, R.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

White, E. H.

W. D. McElroy, H. H. Seliger, and E. H. White, "Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin," Photochem. Photobiol. 10, 153-170 (1969).

Xu, H.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multi-spectral imaging," J. Biomed. Opt. (to be published).

C. Kuo, H. Ahsan, J. Hunter, T. L. Troy, H. Xu, N. Zhang, and B. W. Rice, "In vivo bioluminescent tomography using multispectral and multiperspective image data," in OSA Technical Digest on Biomedical Optics (Optical Society of America, 2006), paper TuG4.

Zabner, J.

Zacharakis, G.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
[CrossRef]

Zhang, N.

C. Kuo, H. Ahsan, J. Hunter, T. L. Troy, H. Xu, N. Zhang, and B. W. Rice, "In vivo bioluminescent tomography using multispectral and multiperspective image data," in OSA Technical Digest on Biomedical Optics (Optical Society of America, 2006), paper TuG4.

Zhang, Q.

S. Li, Q. Zhang, and H. Jiang, "Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments," Appl Opt. 45, 3390-3394 (2006).
[CrossRef]

Zhang, Q. H.

Zhu, F.

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef]

Acad. Radiol.

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef]

Anal Biochem.

G. R. Rettig, M. McAnuff, D. Liu, J. S. Kim, and K. G. Rice, "Quantitative bioluminescence imaging of transgene expression in vivo," Anal Biochem. 355, 90-94 (2006).
[CrossRef]

Annu. Rev. Biomed. Eng.

C. H. Contag and M. H. Bachmann, "Advances in in vivo bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef]

Appl Opt.

S. Li, Q. Zhang, and H. Jiang, "Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments," Appl Opt. 45, 3390-3394 (2006).
[CrossRef]

Appl. Opt.

Curr. Opin. Biotechnol.

A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opin. Biotechnol. 16, 79-88 (2005).
[CrossRef]

Eur. J. Cancer

M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002).
[CrossRef]

Genes Dev.

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef]

IEEE J. Quantum Electron.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

J. Biol. Chem.

J. F. Mercier, A. Salahpour, S. Angers, A. Breit, and M. Bouvier, "Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer," J. Biol. Chem. 277, 44925-44931 (2002).
[CrossRef]

J. Biomed. Opt.

B. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light-emitting probes," J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multi-spectral imaging," J. Biomed. Opt. (to be published).

J. Magn. Reson. Imaging

C. H. Contag and B. D. Ross, "It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology," J. Magn. Reson. Imaging 16, 378-387 (2002).
[CrossRef]

Luminescence

L. J. Kricka, J. Stroebel, and P. E. Stanley, "Bioluminescent fusion conjugates and bioluminescent immunoassays: 1988-1998," Luminescence 14, 39-46 (1999).
[CrossRef]

Med. Phys.

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289-2299 (2004).
[CrossRef]

Mol. Imaging

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004).
[CrossRef]

J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. Jansen, "Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants," Mol. Imaging 3, 333-342 (2004).
[CrossRef]

Nat. Biotechnol.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

Neoplasia

A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000).
[CrossRef]

Opt Lett.

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt Lett. 31, 365-367 (2006).
[CrossRef]

Opt. Express

Photochem. Photobiol.

C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).

W. D. McElroy, H. H. Seliger, and E. H. White, "Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin," Photochem. Photobiol. 10, 153-170 (1969).

Phys. Med. Biol.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system," Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef]

D. C. Comsa, T. J. Farrell, and M. S. Patterson, "Quantification of bioluminescence images of point source objects using diffusion theory models," Phys. Med. Biol. 51, 3733-3746 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. USA

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005).
[CrossRef]

Proc. SPIE

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging technique," in Genetically Engineered and Optical Probes for Biomedical Applications, A. P. Savitsky, P. J. Bernhop, R. Raghavachari, and S. I. Achilefu, eds., Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

Other

C. Kuo, H. Ahsan, J. Hunter, T. L. Troy, H. Xu, N. Zhang, and B. W. Rice, "In vivo bioluminescent tomography using multispectral and multiperspective image data," in OSA Technical Digest on Biomedical Optics (Optical Society of America, 2006), paper TuG4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Representative output of Living Image software 3D Analysis package reconstruction from a luminescent bead beneath 5 mm of tissue slab. Pictured in the large right panel of the image is the reconstructed subject volume with the light source indicated by the highlighted pixel. The left panels show cutaway views indicating the position of the light source and demonstrating the manner in which source depth was measured. The axis labels show dimensions in millimeters.

Fig. 2
Fig. 2

Reconstructed source depth as a function of actual source depth under a tissue slab. A luminescent bead was placed beneath the prescribed thickness of chicken breast. Source depth was reconstructed using the Living Image reconstruction software. Shown is the mean of four experiments ± the standard deviation. The dashed line indicates the ideal reconstruction of the correct source depth.

Fig. 3
Fig. 3

Reconstructed source intensity as a function of source depth under a tissue slab. A luminescent bead was placed beneath the prescribed thickness of chicken breast. Source intensity was reconstructed using the Living Image software package. The mean of four experiments ± the standard deviation is plotted. The dashed line indicates the true light source intensity as determined by imaging the luminescent bead with no tissue above the bead.

Fig. 4
Fig. 4

(Color online) (A) Three-dimensional bioluminescence reconstruction of a single bead implanted in the liver of a mouse and (B) corresponding CT scan showing the actual location of the luminescent (and radio-opaque) bead. Three-dimensional BLI image was reconstructed using the Living Image algorithm; the reconstructed light source is shown as the highlighted voxel within the mouse volume. On the CT scan the solid arrow indicates the luminescent bead with the measured depth indicated. The dashed arrow indicates the spine of the mouse. The mouse was oriented in the supine position, with the right side of the image (the side the spine is shifted toward) the right side of the mouse.

Fig. 5
Fig. 5

Reconstructed source depth as a function of actual source depth. The actual depth of luminescent beads implanted in the abdomen of mice was determined by CT. Source location was reconstructed using the Living Image algorithm inputting three different tissue optical properties. The dashed line indicates correct source depth reconstruction.

Fig. 6
Fig. 6

Reconstructed source intensity as a function of source depth. Source intensity was reconstructed with the Living Image software reconstruction using three different tissue optical properties for reconstruction. The actual source intensity is plotted as a dashed line.

Tables (2)

Tables Icon

Table 1 Tissue Optical Properties Used in Reconstruction a

Tables Icon

Table 2 Ability of the Living Image Reconstruction Algorithm to Accurately Distinguish Two Separate Luminescent Beads Separated by the Indicated Spatial Separation is a Function of Source Depth a

Metrics