Abstract

We propose a novel phase-conjugate copying method for nondestructive readout of a volatile photorefractive hologram. In the one-crystal configuration, two holographic memories and a mutually pumped phase conjugator (MPPC) are formed within a single photorefractive crystal, instead of using multiple crystals. Two memories share the same hologram and complement each other in refreshing the hologram. A MPPC suppresses fanning noise and automatically aligns the wavefront of the reference and readout beams. We found the optimum configuration to achieve nondestructive readout from calculations and geometric consideration. In the experiments with a BaTiO3 crystal, a continuous readout of 20 times longer than the recording time was achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Introduction to Photorefractive Nonlinear Optics, (Wiley, 1993).
  2. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, 1996).
  3. X. An and D. Psaltis, "Thermal fixing of 10,000 holograms in LiNbO3:Fe," Appl. Opt. 38, 386-392 (1999).
    [CrossRef]
  4. J. Ma, T. Chang, J. Hong, and R. Neurgaonkar, "Electrical fixing of 1000 angle-multiplexed holograms in SBN: 75," Opt. Lett. 22, 1116-1118 (1997).
    [CrossRef] [PubMed]
  5. K. Buse, A. Adibi, and D. Psaltis, "Nonvolatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
    [CrossRef]
  6. D. Brady, K. Hsu, and D. Psaltis, "Periodically refreshed multiply exposed photorefractive holograms," Opt. Lett. 15, 817-819 (1990).
    [CrossRef] [PubMed]
  7. H. Sasaki, Y. Fainman, J. E. Ford, Y. Taketomi, and H. Lee, "Dynamic photorefractive optical memory," Opt. Lett. 16, 1874-1876 (1991).
    [CrossRef] [PubMed]
  8. S. Boj, G. Pauliat, and G. Roosen, "Dynamic holographic memory showing readout, refreshing, and updating capabilities," Opt. Lett. 17, 438-440 (1992).
    [CrossRef] [PubMed]
  9. E. Chuang, L. Wenhai, J. P. Drolet, and D. Psaltis, "Holographic random access memory (HRAM)," Proc. IEEE 87, 1931-1940 (1999).
    [CrossRef]
  10. Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, and R. R. Neurgaonkar, "Phase-locked sustainment of photorefractive holograms using phase conjugation," J. Appl. Phys. 70, 4646-4648 (1991).
    [CrossRef]
  11. T. Dellwig, C. Denz, T. Rauch, and T. Tschudi, "Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation," Opt. Commun. 119, 333-340 (1995).
    [CrossRef]
  12. S. Campbell, P. Yeh, C. Gu, S. H. Lin, C. Cheng, and K. Y. Hsu, "Optical restoration of photorefractive holograms through self-enhanced diffraction," Opt. Lett. 20, 330-332 (1995).
    [CrossRef] [PubMed]
  13. H. Funakoshi, A. Okamoto, and K. Sato, "Long-term reading experiment on photorefractive holographic memory with hologram sustainment technique by optical feedback," J. Mod. Opt. 52, 1511-1527 (2005).
    [CrossRef]
  14. H. Sasaki, J. Ma, Y. Fainman, and S. Lee, "Fast update of dynamic holographic memory," Opt. Lett. 17, 1468-1470 (1992).
    [CrossRef] [PubMed]
  15. P. Xie, Y. H. Hong, J. H. Dai, Y. Zhu, and H. J. Zhang, "Theoretical and experimental studies of fanning effects in photorefractive crystals," J. Appl. Phys. 74, 813-818 (1993).
    [CrossRef]
  16. M. Segev, D. Engin, A. Yariv, and G. C. Valley, "Temporal evolution of fanning in photorefractive materials," Opt. Lett. 18, 956-958 (1993).
    [CrossRef] [PubMed]
  17. P. A. Yeh, T. Y. Chang, and M. D. Ewbank, "Model for mutually pumped phase conjugation," J. Opt. Soc. Am. B 5, 1743-1749 (1988).
    [CrossRef]
  18. Q. B. He, P. Yeh, C. Gu, and R. R. Neurgaonkar, "Multigrating competition effects in photorefractive mutually pumped phase conjugation," J. Opt. Soc. Am. B 9, 114-120 (1992).
    [CrossRef]
  19. S. Weiss, S. Sternklar, and B. Fischer, "Double phase-conjugate mirror: analysis, demonstration, and applications," Opt. Lett. 12, 114-116 (1987).
    [CrossRef] [PubMed]
  20. Y. Yang, A. Adibi, and D. Psaltis, "Comparison of transmission and the 90-degree holographic recording geometry," Appl. Opt. 42, 3418-3427 (2003).
    [CrossRef] [PubMed]
  21. W. S. Rabinovich, B. J. Feldman, and G. C. Gilbreath, "Suppression of photorefractive beam fanning using achromatic gratings," Opt. Lett. 16, 1147-1149 (1991).
    [CrossRef] [PubMed]
  22. Q. B. He and P. Yeh, "Fanning noise reduction in photorefractive amplifiers using incoherent erasures," Appl. Opt. 33, 283-285 (1994).
    [CrossRef] [PubMed]
  23. A. A. Zozulya, M. Saffman, and D. Z. Anderson, "Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries," Phys. Rev. Lett. 73, 818-821 (1994).
    [CrossRef] [PubMed]
  24. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, "Theory and applications of four-wave mixing in photorefractive media," IEEE J. Quantum Electron. QE-20, 12-31 (1984).
    [CrossRef]
  25. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. steady state," Ferroelectrics 22, 949-960 (1979).
    [CrossRef]
  26. H. Okamura, T. Shimura, M. Itoh, K. Kuroda, and I. Ogura, "Measurement of photorefractive coupling constant of BaTiO3 using varying interaction length method," Opt. Commun. 99, 230-236 (1993).
    [CrossRef]
  27. F. H. Mok, G. W. Burr, and D. Psaltis, "System metric for holographic memory systems," Opt. Lett. 21, 896-898 (1996).
    [CrossRef] [PubMed]
  28. T. Ito and A. Okamoto, "Volume holographic recording using spatial spread-spectrum multiplexing," Jpn. J. Appl. Phys. 45, 1270-1276 (2006).
    [CrossRef]

2006 (1)

T. Ito and A. Okamoto, "Volume holographic recording using spatial spread-spectrum multiplexing," Jpn. J. Appl. Phys. 45, 1270-1276 (2006).
[CrossRef]

2005 (1)

H. Funakoshi, A. Okamoto, and K. Sato, "Long-term reading experiment on photorefractive holographic memory with hologram sustainment technique by optical feedback," J. Mod. Opt. 52, 1511-1527 (2005).
[CrossRef]

2003 (1)

1999 (2)

X. An and D. Psaltis, "Thermal fixing of 10,000 holograms in LiNbO3:Fe," Appl. Opt. 38, 386-392 (1999).
[CrossRef]

E. Chuang, L. Wenhai, J. P. Drolet, and D. Psaltis, "Holographic random access memory (HRAM)," Proc. IEEE 87, 1931-1940 (1999).
[CrossRef]

1998 (1)

K. Buse, A. Adibi, and D. Psaltis, "Nonvolatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (2)

S. Campbell, P. Yeh, C. Gu, S. H. Lin, C. Cheng, and K. Y. Hsu, "Optical restoration of photorefractive holograms through self-enhanced diffraction," Opt. Lett. 20, 330-332 (1995).
[CrossRef] [PubMed]

T. Dellwig, C. Denz, T. Rauch, and T. Tschudi, "Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation," Opt. Commun. 119, 333-340 (1995).
[CrossRef]

1994 (2)

A. A. Zozulya, M. Saffman, and D. Z. Anderson, "Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries," Phys. Rev. Lett. 73, 818-821 (1994).
[CrossRef] [PubMed]

Q. B. He and P. Yeh, "Fanning noise reduction in photorefractive amplifiers using incoherent erasures," Appl. Opt. 33, 283-285 (1994).
[CrossRef] [PubMed]

1993 (3)

M. Segev, D. Engin, A. Yariv, and G. C. Valley, "Temporal evolution of fanning in photorefractive materials," Opt. Lett. 18, 956-958 (1993).
[CrossRef] [PubMed]

P. Xie, Y. H. Hong, J. H. Dai, Y. Zhu, and H. J. Zhang, "Theoretical and experimental studies of fanning effects in photorefractive crystals," J. Appl. Phys. 74, 813-818 (1993).
[CrossRef]

H. Okamura, T. Shimura, M. Itoh, K. Kuroda, and I. Ogura, "Measurement of photorefractive coupling constant of BaTiO3 using varying interaction length method," Opt. Commun. 99, 230-236 (1993).
[CrossRef]

1992 (3)

1991 (3)

1990 (1)

1988 (1)

1987 (1)

1984 (1)

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, "Theory and applications of four-wave mixing in photorefractive media," IEEE J. Quantum Electron. QE-20, 12-31 (1984).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Adibi, A.

Y. Yang, A. Adibi, and D. Psaltis, "Comparison of transmission and the 90-degree holographic recording geometry," Appl. Opt. 42, 3418-3427 (2003).
[CrossRef] [PubMed]

K. Buse, A. Adibi, and D. Psaltis, "Nonvolatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[CrossRef]

An, X.

Anderson, D. Z.

A. A. Zozulya, M. Saffman, and D. Z. Anderson, "Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries," Phys. Rev. Lett. 73, 818-821 (1994).
[CrossRef] [PubMed]

Boj, S.

Brady, D.

Burr, G. W.

Buse, K.

K. Buse, A. Adibi, and D. Psaltis, "Nonvolatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[CrossRef]

Campbell, S.

Chang, T.

Chang, T. Y.

Cheng, C.

Chuang, E.

E. Chuang, L. Wenhai, J. P. Drolet, and D. Psaltis, "Holographic random access memory (HRAM)," Proc. IEEE 87, 1931-1940 (1999).
[CrossRef]

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, "Theory and applications of four-wave mixing in photorefractive media," IEEE J. Quantum Electron. QE-20, 12-31 (1984).
[CrossRef]

Dai, J. H.

P. Xie, Y. H. Hong, J. H. Dai, Y. Zhu, and H. J. Zhang, "Theoretical and experimental studies of fanning effects in photorefractive crystals," J. Appl. Phys. 74, 813-818 (1993).
[CrossRef]

Dellwig, T.

T. Dellwig, C. Denz, T. Rauch, and T. Tschudi, "Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation," Opt. Commun. 119, 333-340 (1995).
[CrossRef]

Denz, C.

T. Dellwig, C. Denz, T. Rauch, and T. Tschudi, "Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation," Opt. Commun. 119, 333-340 (1995).
[CrossRef]

Drolet, J. P.

E. Chuang, L. Wenhai, J. P. Drolet, and D. Psaltis, "Holographic random access memory (HRAM)," Proc. IEEE 87, 1931-1940 (1999).
[CrossRef]

Engin, D.

Ewbank, M. D.

Fainman, Y.

Feldman, B. J.

Fischer, B.

S. Weiss, S. Sternklar, and B. Fischer, "Double phase-conjugate mirror: analysis, demonstration, and applications," Opt. Lett. 12, 114-116 (1987).
[CrossRef] [PubMed]

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, "Theory and applications of four-wave mixing in photorefractive media," IEEE J. Quantum Electron. QE-20, 12-31 (1984).
[CrossRef]

Ford, J. E.

Funakoshi, H.

H. Funakoshi, A. Okamoto, and K. Sato, "Long-term reading experiment on photorefractive holographic memory with hologram sustainment technique by optical feedback," J. Mod. Opt. 52, 1511-1527 (2005).
[CrossRef]

Gilbreath, G. C.

Grunnet-Jepsen, A.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, 1996).

Gu, C.

He, Q. B.

Hong, J.

J. Ma, T. Chang, J. Hong, and R. Neurgaonkar, "Electrical fixing of 1000 angle-multiplexed holograms in SBN: 75," Opt. Lett. 22, 1116-1118 (1997).
[CrossRef] [PubMed]

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, and R. R. Neurgaonkar, "Phase-locked sustainment of photorefractive holograms using phase conjugation," J. Appl. Phys. 70, 4646-4648 (1991).
[CrossRef]

Hong, Y. H.

P. Xie, Y. H. Hong, J. H. Dai, Y. Zhu, and H. J. Zhang, "Theoretical and experimental studies of fanning effects in photorefractive crystals," J. Appl. Phys. 74, 813-818 (1993).
[CrossRef]

Hsu, K.

Hsu, K. Y.

Ito, T.

T. Ito and A. Okamoto, "Volume holographic recording using spatial spread-spectrum multiplexing," Jpn. J. Appl. Phys. 45, 1270-1276 (2006).
[CrossRef]

Itoh, M.

H. Okamura, T. Shimura, M. Itoh, K. Kuroda, and I. Ogura, "Measurement of photorefractive coupling constant of BaTiO3 using varying interaction length method," Opt. Commun. 99, 230-236 (1993).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Kuroda, K.

H. Okamura, T. Shimura, M. Itoh, K. Kuroda, and I. Ogura, "Measurement of photorefractive coupling constant of BaTiO3 using varying interaction length method," Opt. Commun. 99, 230-236 (1993).
[CrossRef]

Lee, H.

Lee, S.

Lin, S. H.

Ma, J.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Mok, F. H.

Neurgaonkar, R.

Neurgaonkar, R. R.

Q. B. He, P. Yeh, C. Gu, and R. R. Neurgaonkar, "Multigrating competition effects in photorefractive mutually pumped phase conjugation," J. Opt. Soc. Am. B 9, 114-120 (1992).
[CrossRef]

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, and R. R. Neurgaonkar, "Phase-locked sustainment of photorefractive holograms using phase conjugation," J. Appl. Phys. 70, 4646-4648 (1991).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Ogura, I.

H. Okamura, T. Shimura, M. Itoh, K. Kuroda, and I. Ogura, "Measurement of photorefractive coupling constant of BaTiO3 using varying interaction length method," Opt. Commun. 99, 230-236 (1993).
[CrossRef]

Okamoto, A.

T. Ito and A. Okamoto, "Volume holographic recording using spatial spread-spectrum multiplexing," Jpn. J. Appl. Phys. 45, 1270-1276 (2006).
[CrossRef]

H. Funakoshi, A. Okamoto, and K. Sato, "Long-term reading experiment on photorefractive holographic memory with hologram sustainment technique by optical feedback," J. Mod. Opt. 52, 1511-1527 (2005).
[CrossRef]

Okamura, H.

H. Okamura, T. Shimura, M. Itoh, K. Kuroda, and I. Ogura, "Measurement of photorefractive coupling constant of BaTiO3 using varying interaction length method," Opt. Commun. 99, 230-236 (1993).
[CrossRef]

Pauliat, G.

Psaltis, D.

Y. Yang, A. Adibi, and D. Psaltis, "Comparison of transmission and the 90-degree holographic recording geometry," Appl. Opt. 42, 3418-3427 (2003).
[CrossRef] [PubMed]

X. An and D. Psaltis, "Thermal fixing of 10,000 holograms in LiNbO3:Fe," Appl. Opt. 38, 386-392 (1999).
[CrossRef]

E. Chuang, L. Wenhai, J. P. Drolet, and D. Psaltis, "Holographic random access memory (HRAM)," Proc. IEEE 87, 1931-1940 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, "Nonvolatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[CrossRef]

F. H. Mok, G. W. Burr, and D. Psaltis, "System metric for holographic memory systems," Opt. Lett. 21, 896-898 (1996).
[CrossRef] [PubMed]

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, and R. R. Neurgaonkar, "Phase-locked sustainment of photorefractive holograms using phase conjugation," J. Appl. Phys. 70, 4646-4648 (1991).
[CrossRef]

D. Brady, K. Hsu, and D. Psaltis, "Periodically refreshed multiply exposed photorefractive holograms," Opt. Lett. 15, 817-819 (1990).
[CrossRef] [PubMed]

Qiao, Y.

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, and R. R. Neurgaonkar, "Phase-locked sustainment of photorefractive holograms using phase conjugation," J. Appl. Phys. 70, 4646-4648 (1991).
[CrossRef]

Rabinovich, W. S.

Rauch, T.

T. Dellwig, C. Denz, T. Rauch, and T. Tschudi, "Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation," Opt. Commun. 119, 333-340 (1995).
[CrossRef]

Roosen, G.

Saffman, M.

A. A. Zozulya, M. Saffman, and D. Z. Anderson, "Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries," Phys. Rev. Lett. 73, 818-821 (1994).
[CrossRef] [PubMed]

Sasaki, H.

Sato, K.

H. Funakoshi, A. Okamoto, and K. Sato, "Long-term reading experiment on photorefractive holographic memory with hologram sustainment technique by optical feedback," J. Mod. Opt. 52, 1511-1527 (2005).
[CrossRef]

Segev, M.

Shimura, T.

H. Okamura, T. Shimura, M. Itoh, K. Kuroda, and I. Ogura, "Measurement of photorefractive coupling constant of BaTiO3 using varying interaction length method," Opt. Commun. 99, 230-236 (1993).
[CrossRef]

Solymar, L.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, 1996).

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Sternklar, S.

Taketomi, Y.

Tschudi, T.

T. Dellwig, C. Denz, T. Rauch, and T. Tschudi, "Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation," Opt. Commun. 119, 333-340 (1995).
[CrossRef]

Valley, G. C.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Webb, D. J.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, 1996).

Weiss, S.

Wenhai, L.

E. Chuang, L. Wenhai, J. P. Drolet, and D. Psaltis, "Holographic random access memory (HRAM)," Proc. IEEE 87, 1931-1940 (1999).
[CrossRef]

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, "Theory and applications of four-wave mixing in photorefractive media," IEEE J. Quantum Electron. QE-20, 12-31 (1984).
[CrossRef]

Xie, P.

P. Xie, Y. H. Hong, J. H. Dai, Y. Zhu, and H. J. Zhang, "Theoretical and experimental studies of fanning effects in photorefractive crystals," J. Appl. Phys. 74, 813-818 (1993).
[CrossRef]

Yang, Y.

Yariv, A.

M. Segev, D. Engin, A. Yariv, and G. C. Valley, "Temporal evolution of fanning in photorefractive materials," Opt. Lett. 18, 956-958 (1993).
[CrossRef] [PubMed]

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, "Theory and applications of four-wave mixing in photorefractive media," IEEE J. Quantum Electron. QE-20, 12-31 (1984).
[CrossRef]

Yeh, P.

Yeh, P. A.

Zhang, H. J.

P. Xie, Y. H. Hong, J. H. Dai, Y. Zhu, and H. J. Zhang, "Theoretical and experimental studies of fanning effects in photorefractive crystals," J. Appl. Phys. 74, 813-818 (1993).
[CrossRef]

Zhu, Y.

P. Xie, Y. H. Hong, J. H. Dai, Y. Zhu, and H. J. Zhang, "Theoretical and experimental studies of fanning effects in photorefractive crystals," J. Appl. Phys. 74, 813-818 (1993).
[CrossRef]

Zozulya, A. A.

A. A. Zozulya, M. Saffman, and D. Z. Anderson, "Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries," Phys. Rev. Lett. 73, 818-821 (1994).
[CrossRef] [PubMed]

Appl. Opt. (3)

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, "Theory and applications of four-wave mixing in photorefractive media," IEEE J. Quantum Electron. QE-20, 12-31 (1984).
[CrossRef]

J. Appl. Phys. (2)

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, and R. R. Neurgaonkar, "Phase-locked sustainment of photorefractive holograms using phase conjugation," J. Appl. Phys. 70, 4646-4648 (1991).
[CrossRef]

P. Xie, Y. H. Hong, J. H. Dai, Y. Zhu, and H. J. Zhang, "Theoretical and experimental studies of fanning effects in photorefractive crystals," J. Appl. Phys. 74, 813-818 (1993).
[CrossRef]

J. Mod. Opt. (1)

H. Funakoshi, A. Okamoto, and K. Sato, "Long-term reading experiment on photorefractive holographic memory with hologram sustainment technique by optical feedback," J. Mod. Opt. 52, 1511-1527 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

T. Ito and A. Okamoto, "Volume holographic recording using spatial spread-spectrum multiplexing," Jpn. J. Appl. Phys. 45, 1270-1276 (2006).
[CrossRef]

Nature (1)

K. Buse, A. Adibi, and D. Psaltis, "Nonvolatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[CrossRef]

Opt. Commun. (2)

T. Dellwig, C. Denz, T. Rauch, and T. Tschudi, "Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation," Opt. Commun. 119, 333-340 (1995).
[CrossRef]

H. Okamura, T. Shimura, M. Itoh, K. Kuroda, and I. Ogura, "Measurement of photorefractive coupling constant of BaTiO3 using varying interaction length method," Opt. Commun. 99, 230-236 (1993).
[CrossRef]

Opt. Lett. (10)

F. H. Mok, G. W. Burr, and D. Psaltis, "System metric for holographic memory systems," Opt. Lett. 21, 896-898 (1996).
[CrossRef] [PubMed]

S. Boj, G. Pauliat, and G. Roosen, "Dynamic holographic memory showing readout, refreshing, and updating capabilities," Opt. Lett. 17, 438-440 (1992).
[CrossRef] [PubMed]

S. Weiss, S. Sternklar, and B. Fischer, "Double phase-conjugate mirror: analysis, demonstration, and applications," Opt. Lett. 12, 114-116 (1987).
[CrossRef] [PubMed]

D. Brady, K. Hsu, and D. Psaltis, "Periodically refreshed multiply exposed photorefractive holograms," Opt. Lett. 15, 817-819 (1990).
[CrossRef] [PubMed]

W. S. Rabinovich, B. J. Feldman, and G. C. Gilbreath, "Suppression of photorefractive beam fanning using achromatic gratings," Opt. Lett. 16, 1147-1149 (1991).
[CrossRef] [PubMed]

H. Sasaki, Y. Fainman, J. E. Ford, Y. Taketomi, and H. Lee, "Dynamic photorefractive optical memory," Opt. Lett. 16, 1874-1876 (1991).
[CrossRef] [PubMed]

H. Sasaki, J. Ma, Y. Fainman, and S. Lee, "Fast update of dynamic holographic memory," Opt. Lett. 17, 1468-1470 (1992).
[CrossRef] [PubMed]

M. Segev, D. Engin, A. Yariv, and G. C. Valley, "Temporal evolution of fanning in photorefractive materials," Opt. Lett. 18, 956-958 (1993).
[CrossRef] [PubMed]

S. Campbell, P. Yeh, C. Gu, S. H. Lin, C. Cheng, and K. Y. Hsu, "Optical restoration of photorefractive holograms through self-enhanced diffraction," Opt. Lett. 20, 330-332 (1995).
[CrossRef] [PubMed]

J. Ma, T. Chang, J. Hong, and R. Neurgaonkar, "Electrical fixing of 1000 angle-multiplexed holograms in SBN: 75," Opt. Lett. 22, 1116-1118 (1997).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. A. Zozulya, M. Saffman, and D. Z. Anderson, "Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries," Phys. Rev. Lett. 73, 818-821 (1994).
[CrossRef] [PubMed]

Proc. IEEE (1)

E. Chuang, L. Wenhai, J. P. Drolet, and D. Psaltis, "Holographic random access memory (HRAM)," Proc. IEEE 87, 1931-1940 (1999).
[CrossRef]

Other (2)

P. Yeh, Introduction to Photorefractive Nonlinear Optics, (Wiley, 1993).

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical refresh system using phase-conjugate copying. (a) One-crystal configuration, (b) equivalent system in multicrystal configuration.

Fig. 2
Fig. 2

MPPC: (a) photorefractive beam fanning process and (b) generated MPPC at steady state.

Fig. 3
Fig. 3

Holographic recording in one-crystal configuration. The same information is recorded to Memory 1 and Memory 2 with signal beam S and reference beam R 1 .

Fig. 4
Fig. 4

(a) Optical refreshment for Memory 2 and (b) readout of phase-conjugate signal beam S * and optical refreshment for Memory 1.

Fig. 5
Fig. 5

Optical geometry for analysis of phase-conjugate copying processes in one-crystal configuration.

Fig. 6
Fig. 6

(a) Typical growth and decay of the hologram strengths in each interaction region and (b) corresponding output signal beam intensity I 41 ( 0 ) = | A 41 ( 0 ) | 2 .

Fig. 7
Fig. 7

Calculated output beam intensity versus readout time for different coupling strengths in Phase III, where the coupling strength of the MPPC region is γ 3 L 3 = 2.5 .

Fig. 8
Fig. 8

Output phase conjugate signal intensity at steady state (at t = 5000 s) in Phase III for different γ 1 L 1 and γ 2 L 2 , where γ 3 L 3 = 2.5 . The shading strength represents the normalized output signal intensity.

Fig. 9
Fig. 9

(a) Experimental setup: BS, beam splitter; PBS, polarizing beam splitter; λ / 2 , half-wave plate; M, mirror; PRC, photorefractive BaTiO 3 crystal. (b) Design of the beam geometry.

Fig. 10
Fig. 10

Measured output power versus readout time (solid curve), and the corresponding simulation result with the same parameters used in the experiment: γ 1 L 1 = 1.73 , γ 2 L 2 = 3.11 , and γ 3 L 3 = 2.45 (dashed curve). Each result is normalized by the peak intensity.

Fig. 11
Fig. 11

Reconstructed output images in readout with phase-conjugate copying when both the reference and the readout beams entered the crystal: (a) beginning of the readout, (b) after 60 s, (c) after 180 s.

Fig. 12
Fig. 12

Reconstructed output images in the absence of phase-conjugate copying when only the readout beam entered the crystal. (a) After 60 s and (b) after 80 s.

Tables (1)

Tables Icon

Table 1 Input Beam Intensities and Durations in the Calculation

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

A 1 j ( z , t ) z = Q j * ( z , t ) A 2 j ( z , t ) ,
A 2 j ( z , t ) z = Q j ( z , t ) A 1 j ( z , t ) ,
A 3 j ( z , t ) z = Q j * ( z , t ) A 4 j ( z , t ) ,
A 4 j ( z , t ) z = Q j ( z , t ) A 3 j ( z , t ) ,
τ j Q j ( z , t ) t + Q j ( z , t ) = γ j { A 1 j ( z , t ) A 2 j * ( z , t ) + A 3 j ( z , t ) A 4 j * ( z , t ) } I 0 j .  
γ j = i π Δ n λ cos θ j exp ( i φ j ) ,
Δ n = 1 2 n 0 3 r eff E a ,
U j = 0 L j Q j ( z , t ) d z ,
η j = sin 2 U j .
τ j = τ 0 I 0 j ,
A 11 ( L 1 ) = A 22 ( 0 ) ,
A 21 ( L 1 ) = A 23 ( 0 ) ,
A 31 ( L 1 ) = A 33 ( 0 ) ,
A 41 ( L 1 ) = A 32 ( 0 ) ,
A 12 ( 0 ) = A 13 ( L 3 ) ,
A 42 ( 0 ) = A 43 ( L 3 ) ,
A 32 ( L 2 ) = 0 ,
A 13 ( 0 ) = δ s A 21 ( 0 ) ,
A 33 ( 0 ) = δ s A 42 ( 0 ) .

Metrics