Abstract

Surface-relief fiber Bragg gratings exhibit substantially more polarization dependence than standard fiber Bragg gratings. Using D-fiber with different core orientations, surface-relief gratings are analyzed and fabricated to determine the polarization dependence. We show that the largest Bragg reflection occurs for the polarization state with a dominant TE field component parallel to the flat surface of the fiber. The polarization dependence is adjusted by changing the index of refraction of the surrounding media and by fabricating the surface relief grating using rotated core D-fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
    [CrossRef]
  2. J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, 2002).
  3. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
    [CrossRef]
  4. K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "Surface-relief fiber Bragg gratings for sensing applications," Appl. Opt. 45, 1669-1675 (2006).
    [CrossRef] [PubMed]
  5. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  6. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).
  7. C. Tsao, Optical Fibre Waveguide Analysis (Oxford U. Press, 1992).
  8. Y. Fujii and K. Sano, "Polarization transmission characteristics of optical fibers with elliptical cross section," Electron. Commun. Jpn. 63, 87-93 (1980).
    [CrossRef]
  9. N. J. Cronin, Microwave and Optical Waveguides (Institute of Physics Publishing, 1995).
  10. M. J. Li and S. I. Najafi, "Polarization dependence of grating-assisted waveguide Bragg reflectors," Appl. Opt. 32, 4517-4521 (1993).
    [CrossRef] [PubMed]
  11. L. A. Weller-Brophy and D. G. Hall, "Local normal mode analysis of guided mode interactions with waveguide gratings," J. Lightwave Technol. 6, 1069-1082 (1988).
    [CrossRef]
  12. R. W. Gruhlke and D. G. Hall, "Comparison of two approaches to the waveguide scattering problem: TM polarization," Appl. Opt. 23, 127-133 (1984).
    [CrossRef] [PubMed]
  13. BeamPROP User's Guide, RSoft Inc., 200 Executive Blvd., Ossining, New York.
  14. S. H. Cho, J. Park, B. Kim, and M. H. Kang, "Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion," ETRI J. 26, 371-374 (2004).
    [CrossRef]
  15. R. B. Dyott and P. F. Shrank, "Self-locating elliptically cored fibre with an accessible guiding region," Electron Lett. 18, 980-981 (1982).
    [CrossRef]
  16. D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, and G. Miller, "Controlled core removal from a D-shaped optical fiber," Appl. Opt. 42, 7121-7125 (2003).
    [CrossRef]
  17. M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, "Precision fabrication of D-shaped optical fibers," J. Lightwave Technol. 12, 1524-1531 (1994).
    [CrossRef]

2006 (1)

2005 (1)

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

2004 (1)

S. H. Cho, J. Park, B. Kim, and M. H. Kang, "Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion," ETRI J. 26, 371-374 (2004).
[CrossRef]

2003 (1)

2000 (1)

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

1994 (1)

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, "Precision fabrication of D-shaped optical fibers," J. Lightwave Technol. 12, 1524-1531 (1994).
[CrossRef]

1993 (1)

1988 (1)

L. A. Weller-Brophy and D. G. Hall, "Local normal mode analysis of guided mode interactions with waveguide gratings," J. Lightwave Technol. 6, 1069-1082 (1988).
[CrossRef]

1984 (1)

1982 (1)

R. B. Dyott and P. F. Shrank, "Self-locating elliptically cored fibre with an accessible guiding region," Electron Lett. 18, 980-981 (1982).
[CrossRef]

1980 (1)

Y. Fujii and K. Sano, "Polarization transmission characteristics of optical fibers with elliptical cross section," Electron. Commun. Jpn. 63, 87-93 (1980).
[CrossRef]

Barry, T. S.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, "Precision fabrication of D-shaped optical fibers," J. Lightwave Technol. 12, 1524-1531 (1994).
[CrossRef]

Bennett, T. E.

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Cho, S. H.

S. H. Cho, J. Park, B. Kim, and M. H. Kang, "Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion," ETRI J. 26, 371-374 (2004).
[CrossRef]

Cordaro, M. H.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, "Precision fabrication of D-shaped optical fibers," J. Lightwave Technol. 12, 1524-1531 (1994).
[CrossRef]

Cronin, N. J.

N. J. Cronin, Microwave and Optical Waveguides (Institute of Physics Publishing, 1995).

Dyott, R. B.

D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, and G. Miller, "Controlled core removal from a D-shaped optical fiber," Appl. Opt. 42, 7121-7125 (2003).
[CrossRef]

R. B. Dyott and P. F. Shrank, "Self-locating elliptically cored fibre with an accessible guiding region," Electron Lett. 18, 980-981 (1982).
[CrossRef]

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).

Fujii, Y.

Y. Fujii and K. Sano, "Polarization transmission characteristics of optical fibers with elliptical cross section," Electron. Commun. Jpn. 63, 87-93 (1980).
[CrossRef]

Gruhlke, R. W.

Hall, D. G.

L. A. Weller-Brophy and D. G. Hall, "Local normal mode analysis of guided mode interactions with waveguide gratings," J. Lightwave Technol. 6, 1069-1082 (1988).
[CrossRef]

R. W. Gruhlke and D. G. Hall, "Comparison of two approaches to the waveguide scattering problem: TM polarization," Appl. Opt. 23, 127-133 (1984).
[CrossRef] [PubMed]

Haugse, E.

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Hawkins, A. R.

K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "Surface-relief fiber Bragg gratings for sensing applications," Appl. Opt. 45, 1669-1675 (2006).
[CrossRef] [PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Ipson, B. L.

Johnson, P.

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Kang, M. H.

S. H. Cho, J. Park, B. Kim, and M. H. Kang, "Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion," ETRI J. 26, 371-374 (2004).
[CrossRef]

Kim, B.

S. H. Cho, J. Park, B. Kim, and M. H. Kang, "Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion," ETRI J. 26, 371-374 (2004).
[CrossRef]

Krchnavek, R. R.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, "Precision fabrication of D-shaped optical fibers," J. Lightwave Technol. 12, 1524-1531 (1994).
[CrossRef]

Li, M. J.

López-Higuera, J. M.

J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

Lowder, T. L.

K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "Surface-relief fiber Bragg gratings for sensing applications," Appl. Opt. 45, 1669-1675 (2006).
[CrossRef] [PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Makino, A.

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Markos, D. J.

Miller, G.

Monte, T. D.

Najafi, S. I.

Nelson, D.

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Park, J.

S. H. Cho, J. Park, B. Kim, and M. H. Kang, "Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion," ETRI J. 26, 371-374 (2004).
[CrossRef]

Rode, D. L.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, "Precision fabrication of D-shaped optical fibers," J. Lightwave Technol. 12, 1524-1531 (1994).
[CrossRef]

Sano, K.

Y. Fujii and K. Sano, "Polarization transmission characteristics of optical fibers with elliptical cross section," Electron. Commun. Jpn. 63, 87-93 (1980).
[CrossRef]

Schultz, S. M.

Schulz, W.

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Seim, J.

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Selfridge, R. H.

Shrank, P. F.

R. B. Dyott and P. F. Shrank, "Self-locating elliptically cored fibre with an accessible guiding region," Electron Lett. 18, 980-981 (1982).
[CrossRef]

Smith, K. H.

Trego, A.

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Tsao, C.

C. Tsao, Optical Fibre Waveguide Analysis (Oxford U. Press, 1992).

Udd, E.

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Weller-Brophy, L. A.

L. A. Weller-Brophy and D. G. Hall, "Local normal mode analysis of guided mode interactions with waveguide gratings," J. Lightwave Technol. 6, 1069-1082 (1988).
[CrossRef]

Appl. Opt. (4)

Electron Lett. (1)

R. B. Dyott and P. F. Shrank, "Self-locating elliptically cored fibre with an accessible guiding region," Electron Lett. 18, 980-981 (1982).
[CrossRef]

Electron. Commun. Jpn. (1)

Y. Fujii and K. Sano, "Polarization transmission characteristics of optical fibers with elliptical cross section," Electron. Commun. Jpn. 63, 87-93 (1980).
[CrossRef]

ETRI J. (1)

S. H. Cho, J. Park, B. Kim, and M. H. Kang, "Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion," ETRI J. 26, 371-374 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

J. Lightwave Technol. (2)

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, "Precision fabrication of D-shaped optical fibers," J. Lightwave Technol. 12, 1524-1531 (1994).
[CrossRef]

L. A. Weller-Brophy and D. G. Hall, "Local normal mode analysis of guided mode interactions with waveguide gratings," J. Lightwave Technol. 6, 1069-1082 (1988).
[CrossRef]

Proc. SPIE (1)

E. Udd, W. Schulz, J. Seim, E. Haugse, A. Trego, P. Johnson, T. E. Bennett, D. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Other (6)

J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

N. J. Cronin, Microwave and Optical Waveguides (Institute of Physics Publishing, 1995).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).

C. Tsao, Optical Fibre Waveguide Analysis (Oxford U. Press, 1992).

BeamPROP User's Guide, RSoft Inc., 200 Executive Blvd., Ossining, New York.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

SEM image of a D-fiber.

Fig. 2
Fig. 2

Cross section of a D-fiber with (a) horizontal core (b) vertical core, and (c) rotated core. The germania-doped core has a refractive index of 1.476, the flourine-doped cladding has a refractive index of 1.441, and the undoped supercladding has a refractive index of 1.444. The NA of the fiber is 0.32, and the cutoff wavelength is 1230 ± 130   nm .

Fig. 3
Fig. 3

Diagram showing the polarization of the TE field for the (a) oHE 11 mode and the (b) eHE 11 mode of an elliptical core fiber.

Fig. 4
Fig. 4

(a) Field profile for both the TE ( n eff = 1.4578 ) and the TM ( n eff = 1.4566 ) modes of a multilayer, asymmetric slab waveguide at a free-space wavelength of 1.55   μm . (b) Field profile for both the TE   ( n eff = 1.460 ) and the TM modes ( n eff = 1.460 ) when the surrounding refractive index is equal to the cladding refractive index.

Fig. 5
Fig. 5

(a) Simulation results for horizontal core fiber. P odd and P even correspond to the reflected power of the oHE 11 and eHE 11 modes, respectively. The dots represent experimental data. (b) Simulation results for vertical core fiber.

Fig. 6
Fig. 6

SEM image of the surface-relief grating on the flat side of a D-fiber.

Fig. 7
Fig. 7

(a) Reflection spectrum of a SR-FBG when light is launched into both polarization states. The larger peak corresponds to reflection from the oHE 11 mode, and the smaller peak corresponds to reflection from the eHE 11 mode. (b) Reflection spectrum of a SR-FBG, with the chirp effect removed, when light is launched into both polarization states.

Fig. 8
Fig. 8

Graph showing the simulated and experimental grating efficiencies of a horizontal core SR-FBG for both polarization states versus various indices above the grating. The dots and triangles represent the experimental data, and the insets are reflection spectra at varying indices.

Fig. 9
Fig. 9

Difference in reflected power between the two polarization states as the elliptical core is rotated from 40° to 50° with respect to a line normal to the flat surface. The dot represents experimental data.

Fig. 10
Fig. 10

(a) SEM image of a D-fiber where the core has been rotated 40° from the vertical. (b) SEM image showing the breach in the core. The depth of the core breach is less than 80   nm .

Fig. 11
Fig. 11

(a) Diagram showing a D-fiber illuminated by a laser after it has passed through a polarizer. The polarizer angle, ϕ, is varied to change the orientation of the electric field. (b) Comparison of the two polarization states of a SR-FBG fabricated with 40° core D-fiber.

Fig. 12
Fig. 12

Graph of the transmitted power of the Bragg dip as a function of polarizer angle for both the eHE 11 and the oHE 11 modes of a rotated core SR-FBG.

Metrics