E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006).

[CrossRef]

X. Xu, E. X. Jin, L. Wang, and S. Uppuluri, "Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae," Proc. of SPIE 6106, 61061 (2006).

[CrossRef]

R.-J. Zhu, J. Wang, and G.-F. Jin, "Mie scattering calculation by FDTD employing a modified Debye model for Gold material," Optik 116, 419-422 (2005).

[CrossRef]

J. T. K. Li, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).

[CrossRef]

X. Shi, R. L. Thornton, and L. Hesselink, "A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE 4342, 320-327 (2002).

[CrossRef]

M. A. Branch, T. F. Coleman, and Y. Li, "A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems," SIAM J. Sci. Comput. 21, 1-23 (1999).

[CrossRef]

T. F. Coleman and Y. Li, "On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds," SIAM J. Optim. 6, 418-445 (1996).

[CrossRef]

T. F. Coleman and Y. Li, "On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds," Math. Program. 67, 189-224 (1994).

[CrossRef]

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).

[CrossRef]

R. H. Byrd, R. B. Schnabel, and G. A. Shultz, "Approximate solution of the trust region problem by minimization over two-dimensional subspace," Math. Program. 40, 247-263 (1988).

[CrossRef]

Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin. 28, 1063-1076 (1984).

J. J. Moré and D. C. Sorensen, "Computing a trust region step," SIAM J. Sci. Stat. Comput. 3, 553-572 (1983).

G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat. EMC-23, 377-382 (1981).

[CrossRef]

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).

[CrossRef]

C. J. Bouwkamp, "On Bethe's theory of diffraction by small holes," Philips Res. Rep. 5, 321-332 (1950).

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).

[CrossRef]

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).

[CrossRef]

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).

[CrossRef]

C. J. Bouwkamp, "On Bethe's theory of diffraction by small holes," Philips Res. Rep. 5, 321-332 (1950).

M. A. Branch, T. F. Coleman, and Y. Li, "A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems," SIAM J. Sci. Comput. 21, 1-23 (1999).

[CrossRef]

R. H. Byrd, R. B. Schnabel, and G. A. Shultz, "Approximate solution of the trust region problem by minimization over two-dimensional subspace," Math. Program. 40, 247-263 (1988).

[CrossRef]

M. A. Branch, T. F. Coleman, and Y. Li, "A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems," SIAM J. Sci. Comput. 21, 1-23 (1999).

[CrossRef]

T. F. Coleman and Y. Li, "On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds," SIAM J. Optim. 6, 418-445 (1996).

[CrossRef]

T. F. Coleman and Y. Li, "On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds," Math. Program. 67, 189-224 (1994).

[CrossRef]

X. Xu, E. X. Jin, L. Wang, and S. Uppuluri, "Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae," Proc. of SPIE 6106, 61061 (2006).

[CrossRef]

E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006).

[CrossRef]

R.-J. Zhu, J. Wang, and G.-F. Jin, "Mie scattering calculation by FDTD employing a modified Debye model for Gold material," Optik 116, 419-422 (2005).

[CrossRef]

K. S. Kunz and R. J. Luebbers, *The Finite Difference Time Domain Method for Electromagnetics* (CRC Press, 1993).

J. T. K. Li, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).

[CrossRef]

M. A. Branch, T. F. Coleman, and Y. Li, "A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems," SIAM J. Sci. Comput. 21, 1-23 (1999).

[CrossRef]

T. F. Coleman and Y. Li, "On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds," SIAM J. Optim. 6, 418-445 (1996).

[CrossRef]

T. F. Coleman and Y. Li, "On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds," Math. Program. 67, 189-224 (1994).

[CrossRef]

Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin. 28, 1063-1076 (1984).

K. S. Kunz and R. J. Luebbers, *The Finite Difference Time Domain Method for Electromagnetics* (CRC Press, 1993).

J. J. Moré and D. C. Sorensen, "Computing a trust region step," SIAM J. Sci. Stat. Comput. 3, 553-572 (1983).

G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat. EMC-23, 377-382 (1981).

[CrossRef]

E. D. Palik, *Handbook of Optical Constants of Solids* (Academic, 1985).

J. T. K. Li, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).

[CrossRef]

R. H. Byrd, R. B. Schnabel, and G. A. Shultz, "Approximate solution of the trust region problem by minimization over two-dimensional subspace," Math. Program. 40, 247-263 (1988).

[CrossRef]

R. H. Byrd, R. B. Schnabel, and G. A. Shultz, "Approximate solution of the trust region problem by minimization over two-dimensional subspace," Math. Program. 40, 247-263 (1988).

[CrossRef]

J. J. Moré and D. C. Sorensen, "Computing a trust region step," SIAM J. Sci. Stat. Comput. 3, 553-572 (1983).

X. Shi, R. L. Thornton, and L. Hesselink, "A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE 4342, 320-327 (2002).

[CrossRef]

X. Xu, E. X. Jin, L. Wang, and S. Uppuluri, "Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae," Proc. of SPIE 6106, 61061 (2006).

[CrossRef]

R.-J. Zhu, J. Wang, and G.-F. Jin, "Mie scattering calculation by FDTD employing a modified Debye model for Gold material," Optik 116, 419-422 (2005).

[CrossRef]

X. Xu, E. X. Jin, L. Wang, and S. Uppuluri, "Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae," Proc. of SPIE 6106, 61061 (2006).

[CrossRef]

Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin. 28, 1063-1076 (1984).

J. T. K. Li, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).

[CrossRef]

E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006).

[CrossRef]

X. Xu, E. X. Jin, L. Wang, and S. Uppuluri, "Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae," Proc. of SPIE 6106, 61061 (2006).

[CrossRef]

Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin. 28, 1063-1076 (1984).

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).

[CrossRef]

Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin. 28, 1063-1076 (1984).

R.-J. Zhu, J. Wang, and G.-F. Jin, "Mie scattering calculation by FDTD employing a modified Debye model for Gold material," Optik 116, 419-422 (2005).

[CrossRef]

E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006).

[CrossRef]

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).

[CrossRef]

G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat. EMC-23, 377-382 (1981).

[CrossRef]

J. T. K. Li, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," J. Chem. Phys. 116, 10895-10901 (2002).

[CrossRef]

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).

[CrossRef]

T. F. Coleman and Y. Li, "On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds," Math. Program. 67, 189-224 (1994).

[CrossRef]

R. H. Byrd, R. B. Schnabel, and G. A. Shultz, "Approximate solution of the trust region problem by minimization over two-dimensional subspace," Math. Program. 40, 247-263 (1988).

[CrossRef]

R.-J. Zhu, J. Wang, and G.-F. Jin, "Mie scattering calculation by FDTD employing a modified Debye model for Gold material," Optik 116, 419-422 (2005).

[CrossRef]

C. J. Bouwkamp, "On Bethe's theory of diffraction by small holes," Philips Res. Rep. 5, 321-332 (1950).

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).

[CrossRef]

X. Xu, E. X. Jin, L. Wang, and S. Uppuluri, "Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae," Proc. of SPIE 6106, 61061 (2006).

[CrossRef]

X. Shi, R. L. Thornton, and L. Hesselink, "A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE 4342, 320-327 (2002).

[CrossRef]

Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin. 28, 1063-1076 (1984).

T. F. Coleman and Y. Li, "On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds," SIAM J. Optim. 6, 418-445 (1996).

[CrossRef]

M. A. Branch, T. F. Coleman, and Y. Li, "A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems," SIAM J. Sci. Comput. 21, 1-23 (1999).

[CrossRef]

J. J. Moré and D. C. Sorensen, "Computing a trust region step," SIAM J. Sci. Stat. Comput. 3, 553-572 (1983).

E. D. Palik, *Handbook of Optical Constants of Solids* (Academic, 1985).

K. S. Kunz and R. J. Luebbers, *The Finite Difference Time Domain Method for Electromagnetics* (CRC Press, 1993).

Computer code xfdtd 6.2, REMCOM, 2000.