Abstract

This paper presents an analysis of a simple biprism-based technique that enables inscription of multiple fiber Bragg gratings (FBGs), each with different Bragg wavelength, into a section of an optical fiber. The method offers a tuning range for Bragg wavelength that is comparable to that of the multiple mirror interferometer method. This has an additional advantage over multiple mirror interferometer methods, in that it does not require shifting of the fiber position perpendicular to the fiber axis, over a wide tuning range. Results of an analysis on how such tuning of Bragg wavelengths affects other important parameters of FBGs such as length, bandwidth, and reflectivity have been presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  2. Y. I. Rao, "In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
    [CrossRef]
  3. A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  4. C. Li, Y. Lu, S. Wu, Q. Su, and C. Huang, "Changing photowritten Bragg wavelengths of fiber gratings via one phase mask and four mirrors," Opt. Laser Technol. 36, 459-461 (2004).
    [CrossRef]
  5. M. L. Dockney, S. W. James, and R. P. Tatem, "Fiber Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
    [CrossRef]
  6. A. Othonos and X. Lee, "Novel and improved methods of writing Bragg gratings with phase masks," IEEE Photon. Technol. Lett. 7, 1183-1185 (1995).
    [CrossRef]
  7. Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morsé, J. Q. Wang, and X. Gang, "Tuning Bragg wavelength by writing gratings on prestrained fibers," IEEE Photon. Technol. Lett. 6, 839-842 (1994).
    [CrossRef]
  8. Q. Zhang, D. A. Brown, L. Reinhart, and T. F. Morse, "Simple prism based scheme for fabricating Bragg gratings in optical fibers," Opt. Lett. 19, 2030-2032 (1994).
    [CrossRef] [PubMed]
  9. N. H. Rizvi and M. C. Gower, "Production of submicron period Bragg gratings in optical fibers using wavefront division with a biprism and an excimer laser source," Appl. Phys. Lett. 67, 739-741 (1995).
    [CrossRef]
  10. H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, "Manufacture of photonics components with a deep UV laser source at 255 nm," in Proceedings of the International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, 2001), paper M203.

2004 (1)

C. Li, Y. Lu, S. Wu, Q. Su, and C. Huang, "Changing photowritten Bragg wavelengths of fiber gratings via one phase mask and four mirrors," Opt. Laser Technol. 36, 459-461 (2004).
[CrossRef]

1997 (1)

Y. I. Rao, "In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

1996 (1)

M. L. Dockney, S. W. James, and R. P. Tatem, "Fiber Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
[CrossRef]

1995 (2)

A. Othonos and X. Lee, "Novel and improved methods of writing Bragg gratings with phase masks," IEEE Photon. Technol. Lett. 7, 1183-1185 (1995).
[CrossRef]

N. H. Rizvi and M. C. Gower, "Production of submicron period Bragg gratings in optical fibers using wavefront division with a biprism and an excimer laser source," Appl. Phys. Lett. 67, 739-741 (1995).
[CrossRef]

1994 (2)

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morsé, J. Q. Wang, and X. Gang, "Tuning Bragg wavelength by writing gratings on prestrained fibers," IEEE Photon. Technol. Lett. 6, 839-842 (1994).
[CrossRef]

Q. Zhang, D. A. Brown, L. Reinhart, and T. F. Morse, "Simple prism based scheme for fabricating Bragg gratings in optical fibers," Opt. Lett. 19, 2030-2032 (1994).
[CrossRef] [PubMed]

Booth, H. J.

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, "Manufacture of photonics components with a deep UV laser source at 255 nm," in Proceedings of the International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, 2001), paper M203.

Brown, D. A.

Q. Zhang, D. A. Brown, L. Reinhart, and T. F. Morse, "Simple prism based scheme for fabricating Bragg gratings in optical fibers," Opt. Lett. 19, 2030-2032 (1994).
[CrossRef] [PubMed]

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morsé, J. Q. Wang, and X. Gang, "Tuning Bragg wavelength by writing gratings on prestrained fibers," IEEE Photon. Technol. Lett. 6, 839-842 (1994).
[CrossRef]

Dockney, M. L.

M. L. Dockney, S. W. James, and R. P. Tatem, "Fiber Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
[CrossRef]

Gang, X.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morsé, J. Q. Wang, and X. Gang, "Tuning Bragg wavelength by writing gratings on prestrained fibers," IEEE Photon. Technol. Lett. 6, 839-842 (1994).
[CrossRef]

Gower, M. C.

N. H. Rizvi and M. C. Gower, "Production of submicron period Bragg gratings in optical fibers using wavefront division with a biprism and an excimer laser source," Appl. Phys. Lett. 67, 739-741 (1995).
[CrossRef]

Huang, C.

C. Li, Y. Lu, S. Wu, Q. Su, and C. Huang, "Changing photowritten Bragg wavelengths of fiber gratings via one phase mask and four mirrors," Opt. Laser Technol. 36, 459-461 (2004).
[CrossRef]

Illy, E. K.

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, "Manufacture of photonics components with a deep UV laser source at 255 nm," in Proceedings of the International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, 2001), paper M203.

James, S. W.

M. L. Dockney, S. W. James, and R. P. Tatem, "Fiber Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kearsley, A. J.

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, "Manufacture of photonics components with a deep UV laser source at 255 nm," in Proceedings of the International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, 2001), paper M203.

Knowles, M. R. H.

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, "Manufacture of photonics components with a deep UV laser source at 255 nm," in Proceedings of the International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, 2001), paper M203.

Lee, X.

A. Othonos and X. Lee, "Novel and improved methods of writing Bragg gratings with phase masks," IEEE Photon. Technol. Lett. 7, 1183-1185 (1995).
[CrossRef]

Li, C.

C. Li, Y. Lu, S. Wu, Q. Su, and C. Huang, "Changing photowritten Bragg wavelengths of fiber gratings via one phase mask and four mirrors," Opt. Laser Technol. 36, 459-461 (2004).
[CrossRef]

Lu, Y.

C. Li, Y. Lu, S. Wu, Q. Su, and C. Huang, "Changing photowritten Bragg wavelengths of fiber gratings via one phase mask and four mirrors," Opt. Laser Technol. 36, 459-461 (2004).
[CrossRef]

Morse, T. F.

Morsé, T. F.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morsé, J. Q. Wang, and X. Gang, "Tuning Bragg wavelength by writing gratings on prestrained fibers," IEEE Photon. Technol. Lett. 6, 839-842 (1994).
[CrossRef]

Othonos, A.

A. Othonos and X. Lee, "Novel and improved methods of writing Bragg gratings with phase masks," IEEE Photon. Technol. Lett. 7, 1183-1185 (1995).
[CrossRef]

A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Purves, G. T.

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, "Manufacture of photonics components with a deep UV laser source at 255 nm," in Proceedings of the International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, 2001), paper M203.

Rao, Y. I.

Y. I. Rao, "In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

Reinhart, L.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morsé, J. Q. Wang, and X. Gang, "Tuning Bragg wavelength by writing gratings on prestrained fibers," IEEE Photon. Technol. Lett. 6, 839-842 (1994).
[CrossRef]

Q. Zhang, D. A. Brown, L. Reinhart, and T. F. Morse, "Simple prism based scheme for fabricating Bragg gratings in optical fibers," Opt. Lett. 19, 2030-2032 (1994).
[CrossRef] [PubMed]

Rizvi, N. H.

N. H. Rizvi and M. C. Gower, "Production of submicron period Bragg gratings in optical fibers using wavefront division with a biprism and an excimer laser source," Appl. Phys. Lett. 67, 739-741 (1995).
[CrossRef]

Su, Q.

C. Li, Y. Lu, S. Wu, Q. Su, and C. Huang, "Changing photowritten Bragg wavelengths of fiber gratings via one phase mask and four mirrors," Opt. Laser Technol. 36, 459-461 (2004).
[CrossRef]

Tatem, R. P.

M. L. Dockney, S. W. James, and R. P. Tatem, "Fiber Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
[CrossRef]

Wang, J. Q.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morsé, J. Q. Wang, and X. Gang, "Tuning Bragg wavelength by writing gratings on prestrained fibers," IEEE Photon. Technol. Lett. 6, 839-842 (1994).
[CrossRef]

Wu, S.

C. Li, Y. Lu, S. Wu, Q. Su, and C. Huang, "Changing photowritten Bragg wavelengths of fiber gratings via one phase mask and four mirrors," Opt. Laser Technol. 36, 459-461 (2004).
[CrossRef]

Zhang, Q.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morsé, J. Q. Wang, and X. Gang, "Tuning Bragg wavelength by writing gratings on prestrained fibers," IEEE Photon. Technol. Lett. 6, 839-842 (1994).
[CrossRef]

Q. Zhang, D. A. Brown, L. Reinhart, and T. F. Morse, "Simple prism based scheme for fabricating Bragg gratings in optical fibers," Opt. Lett. 19, 2030-2032 (1994).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

N. H. Rizvi and M. C. Gower, "Production of submicron period Bragg gratings in optical fibers using wavefront division with a biprism and an excimer laser source," Appl. Phys. Lett. 67, 739-741 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Othonos and X. Lee, "Novel and improved methods of writing Bragg gratings with phase masks," IEEE Photon. Technol. Lett. 7, 1183-1185 (1995).
[CrossRef]

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morsé, J. Q. Wang, and X. Gang, "Tuning Bragg wavelength by writing gratings on prestrained fibers," IEEE Photon. Technol. Lett. 6, 839-842 (1994).
[CrossRef]

Meas. Sci. Technol. (2)

Y. I. Rao, "In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

M. L. Dockney, S. W. James, and R. P. Tatem, "Fiber Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer," Meas. Sci. Technol. 7, 445-448 (1996).
[CrossRef]

Opt. Laser Technol. (1)

C. Li, Y. Lu, S. Wu, Q. Su, and C. Huang, "Changing photowritten Bragg wavelengths of fiber gratings via one phase mask and four mirrors," Opt. Laser Technol. 36, 459-461 (2004).
[CrossRef]

Opt. Lett. (1)

Other (3)

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, "Manufacture of photonics components with a deep UV laser source at 255 nm," in Proceedings of the International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, 2001), paper M203.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Biprism in configuration I for inscription of FBGs (period of interference pattern highly exaggerated).

Fig. 2
Fig. 2

Biprism with t = t opt in configuration II for inscription of FBGs.

Fig. 3
Fig. 3

Schematic of biprism for tuning of Bragg wavelength of FBGs during the inscription process.

Fig. 4
Fig. 4

Variation of Bragg wavelength of FBG and rate of change of Bragg wavelength (configuration I).

Fig. 5
Fig. 5

Variation of length and bandwidth of FBG.

Fig. 6
Fig. 6

Variation of visibility of interference fringes and reflectivity of FBG.

Fig. 7
Fig. 7

Variation of Bragg wavelength of FBG and rate of change of Bragg wavelength (configuration II).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

λ B = n e f f λ w / sin [ θ ] ,
L = ( W b / 2 ) ( ( 1 / tan [ θ ] ) tan [ α ] ) .
L F B G ( max ) = ( W b / 2 ) ( 1 tan [ α ] tan [ θ ] ) ,
λ B = n e f f λ w / ( n sin [ α arcsin [ sin [ α ] / n ] ] ) .
t e = ( W b / 4 ) ( tan [ α ] + 1 / tan [ α arcsin [ sin [ α ] / n ] ] ) ( W p / 2 ) tan [ α ] ,
L F B G ( max ) = ( W b / 2 ) ( 1 + tan [ α ] tan [ [ α arcsin [ sin [ α ] / n ] ] ) .
L = ( W b / 4 ) ( 1 + tan [ α ] tan [ α arcsin [ sin [ α ] / n ] ] ) / tan [ θ ] .
θ u = arcsin [ n sin [ α + arcsin [ sin [ i ] / n ] ] ] α ,
θ l = arcsin [ n sin [ α arcsin [ sin [ i ] / n ] ] ] α ,
λ B - i = 2 n e f f λ w / ( sin [ θ u ] + sin [ θ l ] ) .
L F B G = ( d t e ( W p / 2 ) tan [ α ] ) ( tan [ θ u ] + tan [ θ l ] ) for   x e d x f ( region   1 ) ,
L F B G = ( ( W b 1 / 2 ) A C sin [ i 1 ] ) cos [ arcsin [ n sin [ α + i 1 ] ] ] / ( cos [ α ] cos [ θ u ] ) for   x f d x g  ( region   2 ) ,
L F B G = ( x h d ) ( tan [ θ u ] + tan [ θ l ] ) for   x g d x h  ( region   3 ) ,
x f = ( ( W b 1 / 2 ) A C sin [ i 1 ] + tan [ θ l ] ( t e + ( W p / 2 ) tan [ α ] ) + tan [ θ u ] A C cos [ i 1 ] ) / ( tan [ θ l ] + tan [ θ u ] ) ,
x g = ( ( ( W b 1 / 2 ) + A 1 C 1 sin [ i 1 ] ) tan [ θ u ] ( t e + ( W p / 2 ) × tan [ α ] ) tan [ θ l ] A 1 C 1 cos [ i 1 ] ) / ( tan [ θ l ] tan [ θ u ] ) ,
x h = ( ( ( W b 1 / 2 ) + A 1 C 1 sin [ i 1 ] ) ( ( W b 1 / 2 ) A C sin [ i 1 ] ) tan [ θ u ] A C cos [ i 1 ] tan [ θ l ] A 1 C 1 cos [ i 1 ] ) / ( tan [ θ l ] tan [ θ u ] ) ,
A C = ( t e + ( ( W p / 2 ) ( W b 1 / 2 ) ) tan [ α ] ) cos [ α ] / cos [ α + i 1 ] ,
A 1 C 1 = ( t e + ( ( W p / 2 ) ( W b 1 / 2 ) ) tan [ α ] ) cos [ α ] / cos [ α i 1 ] ,
λ B - 2 = 2 n e f f λ w / ( n sin [ α arcsin [ sin [ ( α + i ) / n ] ] ] + n sin [ α arcsin [ sin [ ( α i ) / n ] ] ] ) ,

Metrics