Abstract

Digital sensors and fast digital image processing facilitate the use of pulsed holography for 3D surface measurement of moving objects. The real image of a hologram is reconstructed optically. A sequence of high-resolution projection images of the real image with a varying distance to the hologram is recorded digitally. Focus detection in this image sequence by digital image processing yields the shape of the recorded object. The image intensity serves as a precise pixel-matching texture. An application of this concept is the generation of a textured 3D computer model of a facial surface from a portrait hologram.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
    [CrossRef] [PubMed]
  2. D. Gabor, "Microscopy by reconstructed wavefronts," Proc. R. Soc. London Ser. A 197, 454-487 (1948).
  3. E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1130 (1962).
    [CrossRef]
  4. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with continuous-tone objects," J. Opt. Soc. Am. 53, 1377-1381 (1963).
    [CrossRef]
  5. L. D. Siebert, "Front-lighted pulse laser holography," Appl. Phys. Lett. 11, 326-328 (1967).
    [CrossRef]
  6. D. A. Ansley, "Techniques for pulsed laser holography of people," Appl. Opt. 9, 815-821 (1970).
    [CrossRef] [PubMed]
  7. F. Blais, "Review of 20 years of range sensor development," J. Electron. Imaging 13, 231-240 (2004).
    [CrossRef]
  8. K. A. Stetson, "Holographic surface contouring by limited depth of focus," Appl. Opt. 7, 987-989 (1968).
    [CrossRef]
  9. A. D. Gara, R. F. Majkowski, and T. T. Stapleton, "Holographic system for automatic surface mapping," Appl. Opt. 12, 2172-2179 (1973).
    [CrossRef] [PubMed]
  10. B. A. Tozer and J. M. Webster, "Holography as a measuring tool," CEGB Research 11, 3-11 (1981).
  11. J. R. Bongartz, "Hochauflösende dreidimensionale Gesichts-profilvermessung mit kurzgepulster Holographie," Ph.D. dissertation (Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine-Universität Düsseldorf, 2002).
  12. D. Giel, "Hologram tomography for surface topometry," Ph.D. dissertation (Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine-Universität Düsseldorf, 2003).
  13. A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, "Iterative focus detection in hologram tomography," J. Opt. Soc. Am. A 22, 1176-1180 (2005).
    [CrossRef]
  14. S. Frey, A. Thelen, S. Hirsch, and P. Hering, "Shape measurement using pulsed optical holography," Laser Technik Journal 1, 42-45 (2006).
    [CrossRef]
  15. S. Frey, "Facial measurement by portrait holography and texture-based focus detection," Ph.D. dissertation (Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine-Universität Düsseldorf, 2005).
  16. S. Frey, J. Bongartz, D. Giel, A. Thelen, and P. Hering, "Ultrafast holographic technique for 3D in situ documentation of cultural heritage," in Proc. SPIE 5146, 194-201 (2003).
    [CrossRef]
  17. International Commission on Non-Ionizing Radiation Protection, "Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm," Health Phys. 79, 431-440 (2000).
    [PubMed]
  18. H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, 1995).
  19. J. H. Massig, "Digital off-axis holography with a synthetic aperture," Opt. Lett. 27, 2179-2181 (2002).
    [CrossRef]
  20. G. L. Rogers, "Artificial holograms and astigmatism," Proc. R. Soc. Edinburgh 63, 313-325 (1952).
  21. S. K. Nayar and Y. Nakagawa, "Shape from focus," IEEE Trans. Pattern Anal. Mach. Intell. 16, 824-831 (1994).
    [CrossRef]
  22. N. T. Goldsmith, "Deep focus: a digital processing technique to produce improved focal depth in light microscopy," Image Anal. Stereol. 19, 163-167 (2000).
    [CrossRef]
  23. A. G. Valdecasas, D. Marshall, and J. M. Becerra, "Extended depth-of-focus algorithms in brighfield microscopy," Microscopy Anal. 16(5), 9-17 (2002).
  24. W. S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/.
  25. M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11, 36-42 (2004).
  26. R. J. Pieper and A. Korpel, "Image processing for extended depth of field," Appl. Opt. 22, 1449-1453 (1983).
    [CrossRef] [PubMed]

2006 (1)

S. Frey, A. Thelen, S. Hirsch, and P. Hering, "Shape measurement using pulsed optical holography," Laser Technik Journal 1, 42-45 (2006).
[CrossRef]

2005 (1)

2004 (2)

F. Blais, "Review of 20 years of range sensor development," J. Electron. Imaging 13, 231-240 (2004).
[CrossRef]

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11, 36-42 (2004).

2003 (1)

S. Frey, J. Bongartz, D. Giel, A. Thelen, and P. Hering, "Ultrafast holographic technique for 3D in situ documentation of cultural heritage," in Proc. SPIE 5146, 194-201 (2003).
[CrossRef]

2002 (2)

J. H. Massig, "Digital off-axis holography with a synthetic aperture," Opt. Lett. 27, 2179-2181 (2002).
[CrossRef]

A. G. Valdecasas, D. Marshall, and J. M. Becerra, "Extended depth-of-focus algorithms in brighfield microscopy," Microscopy Anal. 16(5), 9-17 (2002).

2000 (2)

N. T. Goldsmith, "Deep focus: a digital processing technique to produce improved focal depth in light microscopy," Image Anal. Stereol. 19, 163-167 (2000).
[CrossRef]

International Commission on Non-Ionizing Radiation Protection, "Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm," Health Phys. 79, 431-440 (2000).
[PubMed]

1994 (1)

S. K. Nayar and Y. Nakagawa, "Shape from focus," IEEE Trans. Pattern Anal. Mach. Intell. 16, 824-831 (1994).
[CrossRef]

1983 (1)

1981 (1)

B. A. Tozer and J. M. Webster, "Holography as a measuring tool," CEGB Research 11, 3-11 (1981).

1973 (1)

1970 (1)

1968 (1)

1967 (1)

L. D. Siebert, "Front-lighted pulse laser holography," Appl. Phys. Lett. 11, 326-328 (1967).
[CrossRef]

1963 (1)

1962 (1)

1952 (1)

G. L. Rogers, "Artificial holograms and astigmatism," Proc. R. Soc. Edinburgh 63, 313-325 (1952).

1948 (2)

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

D. Gabor, "Microscopy by reconstructed wavefronts," Proc. R. Soc. London Ser. A 197, 454-487 (1948).

Abramoff, M. D.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11, 36-42 (2004).

Ansley, D. A.

Becerra, J. M.

A. G. Valdecasas, D. Marshall, and J. M. Becerra, "Extended depth-of-focus algorithms in brighfield microscopy," Microscopy Anal. 16(5), 9-17 (2002).

Bjelkhagen, H. I.

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, 1995).

Blais, F.

F. Blais, "Review of 20 years of range sensor development," J. Electron. Imaging 13, 231-240 (2004).
[CrossRef]

Bongartz, J.

A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, "Iterative focus detection in hologram tomography," J. Opt. Soc. Am. A 22, 1176-1180 (2005).
[CrossRef]

S. Frey, J. Bongartz, D. Giel, A. Thelen, and P. Hering, "Ultrafast holographic technique for 3D in situ documentation of cultural heritage," in Proc. SPIE 5146, 194-201 (2003).
[CrossRef]

Bongartz, J. R.

J. R. Bongartz, "Hochauflösende dreidimensionale Gesichts-profilvermessung mit kurzgepulster Holographie," Ph.D. dissertation (Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine-Universität Düsseldorf, 2002).

Frey, S.

S. Frey, A. Thelen, S. Hirsch, and P. Hering, "Shape measurement using pulsed optical holography," Laser Technik Journal 1, 42-45 (2006).
[CrossRef]

A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, "Iterative focus detection in hologram tomography," J. Opt. Soc. Am. A 22, 1176-1180 (2005).
[CrossRef]

S. Frey, J. Bongartz, D. Giel, A. Thelen, and P. Hering, "Ultrafast holographic technique for 3D in situ documentation of cultural heritage," in Proc. SPIE 5146, 194-201 (2003).
[CrossRef]

S. Frey, "Facial measurement by portrait holography and texture-based focus detection," Ph.D. dissertation (Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine-Universität Düsseldorf, 2005).

Gabor, D.

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

D. Gabor, "Microscopy by reconstructed wavefronts," Proc. R. Soc. London Ser. A 197, 454-487 (1948).

Gara, A. D.

Giel, D.

A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, "Iterative focus detection in hologram tomography," J. Opt. Soc. Am. A 22, 1176-1180 (2005).
[CrossRef]

S. Frey, J. Bongartz, D. Giel, A. Thelen, and P. Hering, "Ultrafast holographic technique for 3D in situ documentation of cultural heritage," in Proc. SPIE 5146, 194-201 (2003).
[CrossRef]

D. Giel, "Hologram tomography for surface topometry," Ph.D. dissertation (Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine-Universität Düsseldorf, 2003).

Goldsmith, N. T.

N. T. Goldsmith, "Deep focus: a digital processing technique to produce improved focal depth in light microscopy," Image Anal. Stereol. 19, 163-167 (2000).
[CrossRef]

Hering, P.

S. Frey, A. Thelen, S. Hirsch, and P. Hering, "Shape measurement using pulsed optical holography," Laser Technik Journal 1, 42-45 (2006).
[CrossRef]

A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, "Iterative focus detection in hologram tomography," J. Opt. Soc. Am. A 22, 1176-1180 (2005).
[CrossRef]

S. Frey, J. Bongartz, D. Giel, A. Thelen, and P. Hering, "Ultrafast holographic technique for 3D in situ documentation of cultural heritage," in Proc. SPIE 5146, 194-201 (2003).
[CrossRef]

Hirsch, S.

S. Frey, A. Thelen, S. Hirsch, and P. Hering, "Shape measurement using pulsed optical holography," Laser Technik Journal 1, 42-45 (2006).
[CrossRef]

Korpel, A.

Leith, E. N.

Magelhaes, P. J.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11, 36-42 (2004).

Majkowski, R. F.

Marshall, D.

A. G. Valdecasas, D. Marshall, and J. M. Becerra, "Extended depth-of-focus algorithms in brighfield microscopy," Microscopy Anal. 16(5), 9-17 (2002).

Massig, J. H.

Nakagawa, Y.

S. K. Nayar and Y. Nakagawa, "Shape from focus," IEEE Trans. Pattern Anal. Mach. Intell. 16, 824-831 (1994).
[CrossRef]

Nayar, S. K.

S. K. Nayar and Y. Nakagawa, "Shape from focus," IEEE Trans. Pattern Anal. Mach. Intell. 16, 824-831 (1994).
[CrossRef]

Pieper, R. J.

Ram, S. J.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11, 36-42 (2004).

Rogers, G. L.

G. L. Rogers, "Artificial holograms and astigmatism," Proc. R. Soc. Edinburgh 63, 313-325 (1952).

Siebert, L. D.

L. D. Siebert, "Front-lighted pulse laser holography," Appl. Phys. Lett. 11, 326-328 (1967).
[CrossRef]

Stapleton, T. T.

Stetson, K. A.

Thelen, A.

S. Frey, A. Thelen, S. Hirsch, and P. Hering, "Shape measurement using pulsed optical holography," Laser Technik Journal 1, 42-45 (2006).
[CrossRef]

A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, "Iterative focus detection in hologram tomography," J. Opt. Soc. Am. A 22, 1176-1180 (2005).
[CrossRef]

S. Frey, J. Bongartz, D. Giel, A. Thelen, and P. Hering, "Ultrafast holographic technique for 3D in situ documentation of cultural heritage," in Proc. SPIE 5146, 194-201 (2003).
[CrossRef]

Tozer, B. A.

B. A. Tozer and J. M. Webster, "Holography as a measuring tool," CEGB Research 11, 3-11 (1981).

Upatnieks, J.

Valdecasas, A. G.

A. G. Valdecasas, D. Marshall, and J. M. Becerra, "Extended depth-of-focus algorithms in brighfield microscopy," Microscopy Anal. 16(5), 9-17 (2002).

Webster, J. M.

B. A. Tozer and J. M. Webster, "Holography as a measuring tool," CEGB Research 11, 3-11 (1981).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

L. D. Siebert, "Front-lighted pulse laser holography," Appl. Phys. Lett. 11, 326-328 (1967).
[CrossRef]

Biophotonics Int. (1)

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11, 36-42 (2004).

CEGB Research (1)

B. A. Tozer and J. M. Webster, "Holography as a measuring tool," CEGB Research 11, 3-11 (1981).

Health Phys. (1)

International Commission on Non-Ionizing Radiation Protection, "Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm," Health Phys. 79, 431-440 (2000).
[PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. K. Nayar and Y. Nakagawa, "Shape from focus," IEEE Trans. Pattern Anal. Mach. Intell. 16, 824-831 (1994).
[CrossRef]

Image Anal. Stereol. (1)

N. T. Goldsmith, "Deep focus: a digital processing technique to produce improved focal depth in light microscopy," Image Anal. Stereol. 19, 163-167 (2000).
[CrossRef]

J. Electron. Imaging (1)

F. Blais, "Review of 20 years of range sensor development," J. Electron. Imaging 13, 231-240 (2004).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Laser Technik Journal (1)

S. Frey, A. Thelen, S. Hirsch, and P. Hering, "Shape measurement using pulsed optical holography," Laser Technik Journal 1, 42-45 (2006).
[CrossRef]

Microscopy Anal. (1)

A. G. Valdecasas, D. Marshall, and J. M. Becerra, "Extended depth-of-focus algorithms in brighfield microscopy," Microscopy Anal. 16(5), 9-17 (2002).

Nature (1)

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. R. Soc. Edinburgh (1)

G. L. Rogers, "Artificial holograms and astigmatism," Proc. R. Soc. Edinburgh 63, 313-325 (1952).

Proc. R. Soc. London Ser. A (1)

D. Gabor, "Microscopy by reconstructed wavefronts," Proc. R. Soc. London Ser. A 197, 454-487 (1948).

Proc. SPIE (1)

S. Frey, J. Bongartz, D. Giel, A. Thelen, and P. Hering, "Ultrafast holographic technique for 3D in situ documentation of cultural heritage," in Proc. SPIE 5146, 194-201 (2003).
[CrossRef]

Other (5)

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, 1995).

S. Frey, "Facial measurement by portrait holography and texture-based focus detection," Ph.D. dissertation (Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine-Universität Düsseldorf, 2005).

J. R. Bongartz, "Hochauflösende dreidimensionale Gesichts-profilvermessung mit kurzgepulster Holographie," Ph.D. dissertation (Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine-Universität Düsseldorf, 2002).

D. Giel, "Hologram tomography for surface topometry," Ph.D. dissertation (Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine-Universität Düsseldorf, 2003).

W. S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Top view of the optical paths inside the holographic camera. M, mirrors; BS, beam splitters; L1, focusing lens; L2, L3, L4, diverging lenses; D1, D2, diffusor plates. (b) Side view of the reference beam path.

Fig. 2
Fig. 2

Optical setup for the reconstruction of the real image. T, telescope; L, lens; PM, parabolic mirror.

Fig. 3
Fig. 3

(a)–(c) Sectional images of the real image of a portrait hologram. The focal plane changes as the distance to the hologram increases. Skin pores cause an increased image contrast at the in-focus image parts.

Fig. 4
Fig. 4

Bright reflex is shown as it appears in the digitized real image volume. The focus position is determined by intensity maximization (a) along a straight search path parallel to the scan axis and (b) along a search path that follows the increasing brightness of the focused light field.

Fig. 5
Fig. 5

(a) Surface points detected by intensity maximization. (b) Interpolation and median filtering yield a closed smooth surface. (c) Surface contour found by contrast maximization is inserted into the sectional image. (d) Contour is improved by intensity maximization near the contrast maximum.

Fig. 6
Fig. 6

Screen shots of a digital surface model of a test object. (a) Contrast maximization result ( S 1 ) . (b) Intensity maximization result ( S 2 ) . (c) Deviation of the experimentally found surface S 2 to an ideal surface shown as a gray coded texture. (d) Surface profiles at varying y positions (gray lines) are compared to the fitted surface model (black line). The profiles include a right angle. The fitted surface profile is shifted for an easier comparison.

Fig. 7
Fig. 7

(a) Digital surface model of a face obtained from a portrait hologram. (b) Intensity of the holographic image is added to the surface as a pixel-matching texture. The texture contains gray-scale information.

Fig. 8
Fig. 8

Three views of a face are recorded simultaneously using mirrors in the recording setup. Frontal view and mirror views are scanned and processed separately.

Fig. 9
Fig. 9

New mobile holographic camera (HSF-Mini, Geola) is now used for facial measurements at the University Hospital Basel.

Tables (1)

Tables Icon

Table 1 Mean and the Maximum Deviation of the Surfaces S 1 and S 2 from an Ideal Surface a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

c z ( x , y ) = a z ( x , y ) M z ( x , y ) + const
c z ( x , y ) = | a z ( x , y ) M z ( x , y ) | ,
V z ( x , y ) = 1 m 2 k , l = ( m 1 ) / 2 k , l = ( m 1 ) / 2 ( c z ( x k , y l ) M z ( x , y ) ) 2 ,
F ( D x , D y ) = 0 < n 4 c ( x + ( n D x ) , y + ( n D y ) , z + n ) , D x , D y { 1 , 0 , 1 } .

Metrics