A. Federico and G. H. Kaufmann, "Evaluation of dynamic speckle activity using the empirical mode decomposition method," Opt. Commun. 267, 287-294 (2006).

[CrossRef]

A. Federico and G. H. Kaufmann, "Multifractals and dynamic speckle," Proc. SPIE 6341, 63412J (2006).

H. Rabal, N. Cap, M. Trivi, R. Arizaga, A. Federico, G. E. Galizzi, and G. H. Kaufmann, "Speckle activity images based on the spatial variance of the phase," Appl. Opt. 45, 8733-8738 (2006).

[CrossRef]
[PubMed]

G. H. Sendra, R. Arizaga, H. Rabal, and M. Trivi, "Decomposition of biospeckle images in temporary spectral bands," Opt. Lett. 30, 1641-1643 (2005).

[CrossRef]
[PubMed]

B. Ruiz, N. Cap, and H. Rabal, "Local correlation in dynamic speckle," Opt. Commun. 245, 103-111 (2005).

[CrossRef]

L. T. Passoni, H. Rabal, and C. M. Arizmendi, "Characterizing dynamic speckle time data set with the Hurst coefficient concept," Fractals 12, 319-328 (2004).

[CrossRef]

P. Yu, I. Peng, M. Mustata, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue," Opt. Lett. 29, 68-70 (2004).

[CrossRef]
[PubMed]

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, "Biospeckle assessment of bruising in fruits," Opt. Lasers Eng. 40, 13-24 (2003).

[CrossRef]

H. Rabal, R. Arizaga, N. L. Cap, E. Grumel, and M. Trivi, "Numerical model for dynamic speckle: an approach using the movement of the scatterers," J. Opt. A 5, 5381-5385 (2003).

[CrossRef]

G. M. Zaslavsky, "Chaos, fractional kinetics, and anomalous transport," Phys. Rep. 371, 461-580 (2002).

[CrossRef]

G. J. Tearney and B. E. Bouma, "Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis," Opt. Lett. 27, 533-535 (2002).

[CrossRef]

M. F. Limia, A. M. Nuñez, H. Rabal, and M. Trivi, "Wavelet transform analysis of dynamic speckle patterns texture," Appl. Opt. 41, 6745-6750 (2002).

[CrossRef]
[PubMed]

S. Jaffard, "Multifractal formalism for functions part I: results valid for all functions," SIAM J. Math. Anal. 28, 944-970 (1997).

[CrossRef]

S. Jaffard, "Multifractal formalism for functions part II: self-similar functions," SIAM J. Math. Anal. 28, 971-998 (1997).

[CrossRef]

E. Bacry, J. F. Muzy, and A. Arnéodo, "Singularity spectrum of fractal signals from wavelet analysis: exact results," J. Stat. Phys. 70, 635-675 (1993).

[CrossRef]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, "Testing for nonlinearity in time series: the method of surrogate data," Physica D 58, 77-94 (1992).

[CrossRef]

A. Oulamara, G. Tribillon, and J. Dovernoy, "Biological activity measurements on botanical specimen surfaces using a temporal decorrelation effect of laser speckle," J. Mod. Opt. 36, 165-179 (1989).

[CrossRef]

P. Abry, P. Flandrin, M. Taqqu, and D. Veitch, "Wavelets for the analysis, estimation and synthesis of scaling data," in *Self-Similar Network Traffic and Performance Evaluation*, K. Park and W. Willinger, eds. (Wiley, 2000), pp. 39-87.

Y. Aizu and T. Asakura, "Biospeckle," in *Trends in Optics*, A. Consortini, ed. (Academic, 1996), Chap. 2.

H. Rabal, N. Cap, M. Trivi, R. Arizaga, A. Federico, G. E. Galizzi, and G. H. Kaufmann, "Speckle activity images based on the spatial variance of the phase," Appl. Opt. 45, 8733-8738 (2006).

[CrossRef]
[PubMed]

G. H. Sendra, R. Arizaga, H. Rabal, and M. Trivi, "Decomposition of biospeckle images in temporary spectral bands," Opt. Lett. 30, 1641-1643 (2005).

[CrossRef]
[PubMed]

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, "Biospeckle assessment of bruising in fruits," Opt. Lasers Eng. 40, 13-24 (2003).

[CrossRef]

H. Rabal, R. Arizaga, N. L. Cap, E. Grumel, and M. Trivi, "Numerical model for dynamic speckle: an approach using the movement of the scatterers," J. Opt. A 5, 5381-5385 (2003).

[CrossRef]

L. T. Passoni, H. Rabal, and C. M. Arizmendi, "Characterizing dynamic speckle time data set with the Hurst coefficient concept," Fractals 12, 319-328 (2004).

[CrossRef]

E. Bacry, J. F. Muzy, and A. Arnéodo, "Singularity spectrum of fractal signals from wavelet analysis: exact results," J. Stat. Phys. 70, 635-675 (1993).

[CrossRef]

Y. Aizu and T. Asakura, "Biospeckle," in *Trends in Optics*, A. Consortini, ed. (Academic, 1996), Chap. 2.

E. Bacry, J. F. Muzy, and A. Arnéodo, "Singularity spectrum of fractal signals from wavelet analysis: exact results," J. Stat. Phys. 70, 635-675 (1993).

[CrossRef]

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, "Biospeckle assessment of bruising in fruits," Opt. Lasers Eng. 40, 13-24 (2003).

[CrossRef]

H. Rabal, N. Cap, M. Trivi, R. Arizaga, A. Federico, G. E. Galizzi, and G. H. Kaufmann, "Speckle activity images based on the spatial variance of the phase," Appl. Opt. 45, 8733-8738 (2006).

[CrossRef]
[PubMed]

B. Ruiz, N. Cap, and H. Rabal, "Local correlation in dynamic speckle," Opt. Commun. 245, 103-111 (2005).

[CrossRef]

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, "Biospeckle assessment of bruising in fruits," Opt. Lasers Eng. 40, 13-24 (2003).

[CrossRef]

H. Rabal, R. Arizaga, N. L. Cap, E. Grumel, and M. Trivi, "Numerical model for dynamic speckle: an approach using the movement of the scatterers," J. Opt. A 5, 5381-5385 (2003).

[CrossRef]

A. Oulamara, G. Tribillon, and J. Dovernoy, "Biological activity measurements on botanical specimen surfaces using a temporal decorrelation effect of laser speckle," J. Mod. Opt. 36, 165-179 (1989).

[CrossRef]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, "Testing for nonlinearity in time series: the method of surrogate data," Physica D 58, 77-94 (1992).

[CrossRef]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, "Testing for nonlinearity in time series: the method of surrogate data," Physica D 58, 77-94 (1992).

[CrossRef]

A. Federico and G. H. Kaufmann, "Multifractals and dynamic speckle," Proc. SPIE 6341, 63412J (2006).

H. Rabal, N. Cap, M. Trivi, R. Arizaga, A. Federico, G. E. Galizzi, and G. H. Kaufmann, "Speckle activity images based on the spatial variance of the phase," Appl. Opt. 45, 8733-8738 (2006).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, "Evaluation of dynamic speckle activity using the empirical mode decomposition method," Opt. Commun. 267, 287-294 (2006).

[CrossRef]

P. Abry, P. Flandrin, M. Taqqu, and D. Veitch, "Wavelets for the analysis, estimation and synthesis of scaling data," in *Self-Similar Network Traffic and Performance Evaluation*, K. Park and W. Willinger, eds. (Wiley, 2000), pp. 39-87.

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, "Testing for nonlinearity in time series: the method of surrogate data," Physica D 58, 77-94 (1992).

[CrossRef]

H. Rabal, R. Arizaga, N. L. Cap, E. Grumel, and M. Trivi, "Numerical model for dynamic speckle: an approach using the movement of the scatterers," J. Opt. A 5, 5381-5385 (2003).

[CrossRef]

S. Jaffard, "Multifractal formalism for functions part I: results valid for all functions," SIAM J. Math. Anal. 28, 944-970 (1997).

[CrossRef]

S. Jaffard, "Multifractal formalism for functions part II: self-similar functions," SIAM J. Math. Anal. 28, 971-998 (1997).

[CrossRef]

A. Federico and G. H. Kaufmann, "Evaluation of dynamic speckle activity using the empirical mode decomposition method," Opt. Commun. 267, 287-294 (2006).

[CrossRef]

A. Federico and G. H. Kaufmann, "Multifractals and dynamic speckle," Proc. SPIE 6341, 63412J (2006).

H. Rabal, N. Cap, M. Trivi, R. Arizaga, A. Federico, G. E. Galizzi, and G. H. Kaufmann, "Speckle activity images based on the spatial variance of the phase," Appl. Opt. 45, 8733-8738 (2006).

[CrossRef]
[PubMed]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, "Testing for nonlinearity in time series: the method of surrogate data," Physica D 58, 77-94 (1992).

[CrossRef]

E. Bacry, J. F. Muzy, and A. Arnéodo, "Singularity spectrum of fractal signals from wavelet analysis: exact results," J. Stat. Phys. 70, 635-675 (1993).

[CrossRef]

A. Oulamara, G. Tribillon, and J. Dovernoy, "Biological activity measurements on botanical specimen surfaces using a temporal decorrelation effect of laser speckle," J. Mod. Opt. 36, 165-179 (1989).

[CrossRef]

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, "Biospeckle assessment of bruising in fruits," Opt. Lasers Eng. 40, 13-24 (2003).

[CrossRef]

L. T. Passoni, H. Rabal, and C. M. Arizmendi, "Characterizing dynamic speckle time data set with the Hurst coefficient concept," Fractals 12, 319-328 (2004).

[CrossRef]

H. Rabal, N. Cap, M. Trivi, R. Arizaga, A. Federico, G. E. Galizzi, and G. H. Kaufmann, "Speckle activity images based on the spatial variance of the phase," Appl. Opt. 45, 8733-8738 (2006).

[CrossRef]
[PubMed]

G. H. Sendra, R. Arizaga, H. Rabal, and M. Trivi, "Decomposition of biospeckle images in temporary spectral bands," Opt. Lett. 30, 1641-1643 (2005).

[CrossRef]
[PubMed]

B. Ruiz, N. Cap, and H. Rabal, "Local correlation in dynamic speckle," Opt. Commun. 245, 103-111 (2005).

[CrossRef]

L. T. Passoni, H. Rabal, and C. M. Arizmendi, "Characterizing dynamic speckle time data set with the Hurst coefficient concept," Fractals 12, 319-328 (2004).

[CrossRef]

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, "Biospeckle assessment of bruising in fruits," Opt. Lasers Eng. 40, 13-24 (2003).

[CrossRef]

H. Rabal, R. Arizaga, N. L. Cap, E. Grumel, and M. Trivi, "Numerical model for dynamic speckle: an approach using the movement of the scatterers," J. Opt. A 5, 5381-5385 (2003).

[CrossRef]

M. F. Limia, A. M. Nuñez, H. Rabal, and M. Trivi, "Wavelet transform analysis of dynamic speckle patterns texture," Appl. Opt. 41, 6745-6750 (2002).

[CrossRef]
[PubMed]

B. Ruiz, N. Cap, and H. Rabal, "Local correlation in dynamic speckle," Opt. Commun. 245, 103-111 (2005).

[CrossRef]

P. Abry, P. Flandrin, M. Taqqu, and D. Veitch, "Wavelets for the analysis, estimation and synthesis of scaling data," in *Self-Similar Network Traffic and Performance Evaluation*, K. Park and W. Willinger, eds. (Wiley, 2000), pp. 39-87.

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, "Testing for nonlinearity in time series: the method of surrogate data," Physica D 58, 77-94 (1992).

[CrossRef]

A. Oulamara, G. Tribillon, and J. Dovernoy, "Biological activity measurements on botanical specimen surfaces using a temporal decorrelation effect of laser speckle," J. Mod. Opt. 36, 165-179 (1989).

[CrossRef]

H. Rabal, N. Cap, M. Trivi, R. Arizaga, A. Federico, G. E. Galizzi, and G. H. Kaufmann, "Speckle activity images based on the spatial variance of the phase," Appl. Opt. 45, 8733-8738 (2006).

[CrossRef]
[PubMed]

G. H. Sendra, R. Arizaga, H. Rabal, and M. Trivi, "Decomposition of biospeckle images in temporary spectral bands," Opt. Lett. 30, 1641-1643 (2005).

[CrossRef]
[PubMed]

H. Rabal, R. Arizaga, N. L. Cap, E. Grumel, and M. Trivi, "Numerical model for dynamic speckle: an approach using the movement of the scatterers," J. Opt. A 5, 5381-5385 (2003).

[CrossRef]

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, "Biospeckle assessment of bruising in fruits," Opt. Lasers Eng. 40, 13-24 (2003).

[CrossRef]

M. F. Limia, A. M. Nuñez, H. Rabal, and M. Trivi, "Wavelet transform analysis of dynamic speckle patterns texture," Appl. Opt. 41, 6745-6750 (2002).

[CrossRef]
[PubMed]

P. Abry, P. Flandrin, M. Taqqu, and D. Veitch, "Wavelets for the analysis, estimation and synthesis of scaling data," in *Self-Similar Network Traffic and Performance Evaluation*, K. Park and W. Willinger, eds. (Wiley, 2000), pp. 39-87.

G. M. Zaslavsky, "Chaos, fractional kinetics, and anomalous transport," Phys. Rep. 371, 461-580 (2002).

[CrossRef]

M. F. Limia, A. M. Nuñez, H. Rabal, and M. Trivi, "Wavelet transform analysis of dynamic speckle patterns texture," Appl. Opt. 41, 6745-6750 (2002).

[CrossRef]
[PubMed]

H. Rabal, N. Cap, M. Trivi, R. Arizaga, A. Federico, G. E. Galizzi, and G. H. Kaufmann, "Speckle activity images based on the spatial variance of the phase," Appl. Opt. 45, 8733-8738 (2006).

[CrossRef]
[PubMed]

L. T. Passoni, H. Rabal, and C. M. Arizmendi, "Characterizing dynamic speckle time data set with the Hurst coefficient concept," Fractals 12, 319-328 (2004).

[CrossRef]

A. Oulamara, G. Tribillon, and J. Dovernoy, "Biological activity measurements on botanical specimen surfaces using a temporal decorrelation effect of laser speckle," J. Mod. Opt. 36, 165-179 (1989).

[CrossRef]

H. Rabal, R. Arizaga, N. L. Cap, E. Grumel, and M. Trivi, "Numerical model for dynamic speckle: an approach using the movement of the scatterers," J. Opt. A 5, 5381-5385 (2003).

[CrossRef]

E. Bacry, J. F. Muzy, and A. Arnéodo, "Singularity spectrum of fractal signals from wavelet analysis: exact results," J. Stat. Phys. 70, 635-675 (1993).

[CrossRef]

B. Ruiz, N. Cap, and H. Rabal, "Local correlation in dynamic speckle," Opt. Commun. 245, 103-111 (2005).

[CrossRef]

A. Federico and G. H. Kaufmann, "Evaluation of dynamic speckle activity using the empirical mode decomposition method," Opt. Commun. 267, 287-294 (2006).

[CrossRef]

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, "Biospeckle assessment of bruising in fruits," Opt. Lasers Eng. 40, 13-24 (2003).

[CrossRef]

G. J. Tearney and B. E. Bouma, "Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis," Opt. Lett. 27, 533-535 (2002).

[CrossRef]

P. Yu, I. Peng, M. Mustata, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue," Opt. Lett. 29, 68-70 (2004).

[CrossRef]
[PubMed]

G. H. Sendra, R. Arizaga, H. Rabal, and M. Trivi, "Decomposition of biospeckle images in temporary spectral bands," Opt. Lett. 30, 1641-1643 (2005).

[CrossRef]
[PubMed]

G. M. Zaslavsky, "Chaos, fractional kinetics, and anomalous transport," Phys. Rep. 371, 461-580 (2002).

[CrossRef]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, "Testing for nonlinearity in time series: the method of surrogate data," Physica D 58, 77-94 (1992).

[CrossRef]

S. Jaffard, "Multifractal formalism for functions part I: results valid for all functions," SIAM J. Math. Anal. 28, 944-970 (1997).

[CrossRef]

S. Jaffard, "Multifractal formalism for functions part II: self-similar functions," SIAM J. Math. Anal. 28, 971-998 (1997).

[CrossRef]

A. Federico and G. H. Kaufmann, "Multifractals and dynamic speckle," Proc. SPIE 6341, 63412J (2006).

P. Abry, P. Flandrin, M. Taqqu, and D. Veitch, "Wavelets for the analysis, estimation and synthesis of scaling data," in *Self-Similar Network Traffic and Performance Evaluation*, K. Park and W. Willinger, eds. (Wiley, 2000), pp. 39-87.

Y. Aizu and T. Asakura, "Biospeckle," in *Trends in Optics*, A. Consortini, ed. (Academic, 1996), Chap. 2.