Abstract

Phase-coded optical correlation storage in photorefractive crystals, using a crossed cylindrical-collimating lens system, has been realized. It possesses the advantages of both storage and correlator. It can perform real time and fast selection of the information correlated to the input information from a great amount of stored information. In Zn:Fe:LiNbO3 (0 .03   wt.   %   Fe,  3   mol.   %   Zn), combining this rotational phase-coded multiplexing with angular multiplexing, 36 holograms have been successfully multiplexed and exactly identified in the same crystal volume. The cross talk and angular selectivity of such phase-coded multiplexing are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Van Heerden, "Theory of optical information storage in solids," Appl. Opt. 2, 393-400 (1963).
    [CrossRef]
  2. D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, "Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3," Appl. Phys. Lett. 26, 182-184 (1975).
    [CrossRef]
  3. F. H. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate," Opt. Lett. 18, 915-917 (1993).
    [CrossRef] [PubMed]
  4. G. A. Rakuljic, V. Leyva, and A. Yariv, "Optical data storage using orthogonal wavelength multiplexed volume holograms," Opt. Lett. 17, 1471-1473 (1992).
    [CrossRef] [PubMed]
  5. S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
    [CrossRef]
  6. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, "Potentialities and limitations of hologram multiplexing using the phase-encoding technique," Appl. Opt. 31, 5700-5705 (1992).
    [CrossRef] [PubMed]
  7. C. Alves, G. Pauliat, and G. Roosen, "Dynamic phase-encoding storage of 64 images in a BaTiO3 photorefractive crystal," Opt. Lett. 19, 1894-1896 (1994).
    [CrossRef] [PubMed]
  8. C. C. Chang, K. L. Russell, and G. W. Hu, "Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal," Appl. Phys. B 72, 307-310 (2001).
  9. V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, "Electric field selectivity and multiplexing of volume holograms in LiNbO3," Appl. Phys. B 71, 43-46 (2000).
  10. C. Sun, R. Tsou, W. Chang, J. Chang, and M. Chang, "Random phase-coded multiplexing of hologram volumes using ground glass," Opt. Quantum Electron. 28, 1551-1561 (1996).
    [CrossRef]
  11. C. Denz, T. Dellwig, J. Lembcke, and T. Tschudi, "Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing," Opt. Lett. 21, 278-280 (1996).
    [CrossRef] [PubMed]
  12. J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Recall of linear combinations of stored data pages based on phase-code multiplexing in volume holography," Opt. Lett. 19, 1079-1981 (1994).
    [CrossRef] [PubMed]
  13. J. Y. Fu, Z. Zhou, and F. T. S. Yu, "Phase-coded multiplexing using a crossed cylindrical-collimating lens system for volume hologram storage in LiNbO3," in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VIII, F. T. S. Yu and R. Guo, eds., Proc SPIE 4803, 185-189 (2002).
    [CrossRef]
  14. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  15. K. O. Müller, C. Denz, T. Rauch, T. Hermann, and T. Tschudi, "High capacity holographic data storage based on phase-coded multiplexing," Opt. Mem. Neural Netw. 7, 1-10 (1998).
  16. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J 48, 2909-2947 (1968).
  17. J. M. Heaton, P. A. Mills, E. Paige, L. Solymar, and T. Wilson, "Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials," Opt. Acta 31, 885-901 (1984).
    [CrossRef]
  18. S. Tao, "Spatioangularly multiplexed holographic storage in photorefractive crystals," Ph.D. dissertation (University of London, 1993).
  19. Y. Quan, T. Shiquan, J. Zhuqing, and Y. Xingchang, "The vertical angular selectivity and grating degeneracy of volume holographic gratings," Chin. J. Lasers 24, 337-341 (1997).
  20. E. C. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991).
    [CrossRef]
  21. Y. Taketom, J. E. Ford, J. Ma, Y. Fainman, and S. H. Lee, "Incremental recording for photorefractive hologram multiplexing," Opt. Lett. 16, 1774-1776 (1991).
    [CrossRef]
  22. A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2829 (1996).
    [CrossRef]

2002 (1)

J. Y. Fu, Z. Zhou, and F. T. S. Yu, "Phase-coded multiplexing using a crossed cylindrical-collimating lens system for volume hologram storage in LiNbO3," in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VIII, F. T. S. Yu and R. Guo, eds., Proc SPIE 4803, 185-189 (2002).
[CrossRef]

2001 (1)

C. C. Chang, K. L. Russell, and G. W. Hu, "Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal," Appl. Phys. B 72, 307-310 (2001).

2000 (1)

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, "Electric field selectivity and multiplexing of volume holograms in LiNbO3," Appl. Phys. B 71, 43-46 (2000).

1998 (1)

K. O. Müller, C. Denz, T. Rauch, T. Hermann, and T. Tschudi, "High capacity holographic data storage based on phase-coded multiplexing," Opt. Mem. Neural Netw. 7, 1-10 (1998).

1997 (1)

Y. Quan, T. Shiquan, J. Zhuqing, and Y. Xingchang, "The vertical angular selectivity and grating degeneracy of volume holographic gratings," Chin. J. Lasers 24, 337-341 (1997).

1996 (3)

A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

C. Sun, R. Tsou, W. Chang, J. Chang, and M. Chang, "Random phase-coded multiplexing of hologram volumes using ground glass," Opt. Quantum Electron. 28, 1551-1561 (1996).
[CrossRef]

C. Denz, T. Dellwig, J. Lembcke, and T. Tschudi, "Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing," Opt. Lett. 21, 278-280 (1996).
[CrossRef] [PubMed]

1994 (2)

1993 (2)

F. H. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate," Opt. Lett. 18, 915-917 (1993).
[CrossRef] [PubMed]

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

1992 (2)

1991 (2)

Y. Taketom, J. E. Ford, J. Ma, Y. Fainman, and S. H. Lee, "Incremental recording for photorefractive hologram multiplexing," Opt. Lett. 16, 1774-1776 (1991).
[CrossRef]

E. C. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991).
[CrossRef]

1984 (1)

J. M. Heaton, P. A. Mills, E. Paige, L. Solymar, and T. Wilson, "Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials," Opt. Acta 31, 885-901 (1984).
[CrossRef]

1975 (1)

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, "Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3," Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

1968 (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J 48, 2909-2947 (1968).

1963 (1)

Alves, C.

Amodei, J. J.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, "Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3," Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

Bashaw, M. C.

Burke, W. J.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, "Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3," Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

Chang, C. C.

C. C. Chang, K. L. Russell, and G. W. Hu, "Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal," Appl. Phys. B 72, 307-310 (2001).

Chang, J.

C. Sun, R. Tsou, W. Chang, J. Chang, and M. Chang, "Random phase-coded multiplexing of hologram volumes using ground glass," Opt. Quantum Electron. 28, 1551-1561 (1996).
[CrossRef]

Chang, M.

C. Sun, R. Tsou, W. Chang, J. Chang, and M. Chang, "Random phase-coded multiplexing of hologram volumes using ground glass," Opt. Quantum Electron. 28, 1551-1561 (1996).
[CrossRef]

Chang, W.

C. Sun, R. Tsou, W. Chang, J. Chang, and M. Chang, "Random phase-coded multiplexing of hologram volumes using ground glass," Opt. Quantum Electron. 28, 1551-1561 (1996).
[CrossRef]

Curtis, K.

A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

Dellwig, T.

Denz, C.

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, "Electric field selectivity and multiplexing of volume holograms in LiNbO3," Appl. Phys. B 71, 43-46 (2000).

K. O. Müller, C. Denz, T. Rauch, T. Hermann, and T. Tschudi, "High capacity holographic data storage based on phase-coded multiplexing," Opt. Mem. Neural Netw. 7, 1-10 (1998).

C. Denz, T. Dellwig, J. Lembcke, and T. Tschudi, "Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing," Opt. Lett. 21, 278-280 (1996).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, "Potentialities and limitations of hologram multiplexing using the phase-encoding technique," Appl. Opt. 31, 5700-5705 (1992).
[CrossRef] [PubMed]

Fainman, Y.

Ford, J. E.

Fu, J. Y.

J. Y. Fu, Z. Zhou, and F. T. S. Yu, "Phase-coded multiplexing using a crossed cylindrical-collimating lens system for volume hologram storage in LiNbO3," in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VIII, F. T. S. Yu and R. Guo, eds., Proc SPIE 4803, 185-189 (2002).
[CrossRef]

Heanue, J. F.

Heaton, J. M.

J. M. Heaton, P. A. Mills, E. Paige, L. Solymar, and T. Wilson, "Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials," Opt. Acta 31, 885-901 (1984).
[CrossRef]

Hermann, T.

K. O. Müller, C. Denz, T. Rauch, T. Hermann, and T. Tschudi, "High capacity holographic data storage based on phase-coded multiplexing," Opt. Mem. Neural Netw. 7, 1-10 (1998).

Hesselink, L.

Hu, G. W.

C. C. Chang, K. L. Russell, and G. W. Hu, "Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal," Appl. Phys. B 72, 307-310 (2001).

Johnson, K. M.

E. C. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991).
[CrossRef]

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J 48, 2909-2947 (1968).

Lee, S. H.

Lembcke, J.

Leyva, V.

Ma, J.

Maniloff, E. C.

E. C. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991).
[CrossRef]

Mills, P. A.

J. M. Heaton, P. A. Mills, E. Paige, L. Solymar, and T. Wilson, "Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials," Opt. Acta 31, 885-901 (1984).
[CrossRef]

Mok, F. H.

Müller, K. O.

K. O. Müller, C. Denz, T. Rauch, T. Hermann, and T. Tschudi, "High capacity holographic data storage based on phase-coded multiplexing," Opt. Mem. Neural Netw. 7, 1-10 (1998).

Paige, E.

J. M. Heaton, P. A. Mills, E. Paige, L. Solymar, and T. Wilson, "Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials," Opt. Acta 31, 885-901 (1984).
[CrossRef]

Pauliat, G.

Petrov, M. P.

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, "Electric field selectivity and multiplexing of volume holograms in LiNbO3," Appl. Phys. B 71, 43-46 (2000).

Petrov, V. M.

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, "Electric field selectivity and multiplexing of volume holograms in LiNbO3," Appl. Phys. B 71, 43-46 (2000).

Phillips, W.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, "Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3," Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

Psaltis, D.

A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

Pu, A.

A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

Quan, Y.

Y. Quan, T. Shiquan, J. Zhuqing, and Y. Xingchang, "The vertical angular selectivity and grating degeneracy of volume holographic gratings," Chin. J. Lasers 24, 337-341 (1997).

Rakuljic, G. A.

Rauch, T.

K. O. Müller, C. Denz, T. Rauch, T. Hermann, and T. Tschudi, "High capacity holographic data storage based on phase-coded multiplexing," Opt. Mem. Neural Netw. 7, 1-10 (1998).

Roosen, G.

Russell, K. L.

C. C. Chang, K. L. Russell, and G. W. Hu, "Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal," Appl. Phys. B 72, 307-310 (2001).

Shamray, A. V.

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, "Electric field selectivity and multiplexing of volume holograms in LiNbO3," Appl. Phys. B 71, 43-46 (2000).

Shiquan, T.

Y. Quan, T. Shiquan, J. Zhuqing, and Y. Xingchang, "The vertical angular selectivity and grating degeneracy of volume holographic gratings," Chin. J. Lasers 24, 337-341 (1997).

Solymar, L.

J. M. Heaton, P. A. Mills, E. Paige, L. Solymar, and T. Wilson, "Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials," Opt. Acta 31, 885-901 (1984).
[CrossRef]

Staebler, D. L.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, "Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3," Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

Sun, C.

C. Sun, R. Tsou, W. Chang, J. Chang, and M. Chang, "Random phase-coded multiplexing of hologram volumes using ground glass," Opt. Quantum Electron. 28, 1551-1561 (1996).
[CrossRef]

Taketom, Y.

Tao, S.

S. Tao, "Spatioangularly multiplexed holographic storage in photorefractive crystals," Ph.D. dissertation (University of London, 1993).

Tschudi, T.

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, "Electric field selectivity and multiplexing of volume holograms in LiNbO3," Appl. Phys. B 71, 43-46 (2000).

K. O. Müller, C. Denz, T. Rauch, T. Hermann, and T. Tschudi, "High capacity holographic data storage based on phase-coded multiplexing," Opt. Mem. Neural Netw. 7, 1-10 (1998).

C. Denz, T. Dellwig, J. Lembcke, and T. Tschudi, "Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing," Opt. Lett. 21, 278-280 (1996).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, "Potentialities and limitations of hologram multiplexing using the phase-encoding technique," Appl. Opt. 31, 5700-5705 (1992).
[CrossRef] [PubMed]

Tsou, R.

C. Sun, R. Tsou, W. Chang, J. Chang, and M. Chang, "Random phase-coded multiplexing of hologram volumes using ground glass," Opt. Quantum Electron. 28, 1551-1561 (1996).
[CrossRef]

Van Heerden, P. J.

Wen, M.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Wilson, T.

J. M. Heaton, P. A. Mills, E. Paige, L. Solymar, and T. Wilson, "Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials," Opt. Acta 31, 885-901 (1984).
[CrossRef]

Xingchang, Y.

Y. Quan, T. Shiquan, J. Zhuqing, and Y. Xingchang, "The vertical angular selectivity and grating degeneracy of volume holographic gratings," Chin. J. Lasers 24, 337-341 (1997).

Yang, Z.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Yariv, A.

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Yin, S.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Yu, F. T. S.

J. Y. Fu, Z. Zhou, and F. T. S. Yu, "Phase-coded multiplexing using a crossed cylindrical-collimating lens system for volume hologram storage in LiNbO3," in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VIII, F. T. S. Yu and R. Guo, eds., Proc SPIE 4803, 185-189 (2002).
[CrossRef]

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zhang, J.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zhao, F.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zhou, H.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zhou, Z.

J. Y. Fu, Z. Zhou, and F. T. S. Yu, "Phase-coded multiplexing using a crossed cylindrical-collimating lens system for volume hologram storage in LiNbO3," in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VIII, F. T. S. Yu and R. Guo, eds., Proc SPIE 4803, 185-189 (2002).
[CrossRef]

Zhuqing, J.

Y. Quan, T. Shiquan, J. Zhuqing, and Y. Xingchang, "The vertical angular selectivity and grating degeneracy of volume holographic gratings," Chin. J. Lasers 24, 337-341 (1997).

Appl. Opt. (2)

Appl. Phys. B (2)

C. C. Chang, K. L. Russell, and G. W. Hu, "Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal," Appl. Phys. B 72, 307-310 (2001).

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, "Electric field selectivity and multiplexing of volume holograms in LiNbO3," Appl. Phys. B 71, 43-46 (2000).

Appl. Phys. Lett. (1)

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, "Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3," Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

Bell Syst. Tech. J (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J 48, 2909-2947 (1968).

Chin. J. Lasers (1)

Y. Quan, T. Shiquan, J. Zhuqing, and Y. Xingchang, "The vertical angular selectivity and grating degeneracy of volume holographic gratings," Chin. J. Lasers 24, 337-341 (1997).

J. Appl. Phys. (1)

E. C. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991).
[CrossRef]

Opt. Acta (1)

J. M. Heaton, P. A. Mills, E. Paige, L. Solymar, and T. Wilson, "Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials," Opt. Acta 31, 885-901 (1984).
[CrossRef]

Opt. Commun. (1)

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Opt. Eng. (1)

A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

Opt. Lett. (6)

Opt. Mem. Neural Netw. (1)

K. O. Müller, C. Denz, T. Rauch, T. Hermann, and T. Tschudi, "High capacity holographic data storage based on phase-coded multiplexing," Opt. Mem. Neural Netw. 7, 1-10 (1998).

Opt. Quantum Electron. (1)

C. Sun, R. Tsou, W. Chang, J. Chang, and M. Chang, "Random phase-coded multiplexing of hologram volumes using ground glass," Opt. Quantum Electron. 28, 1551-1561 (1996).
[CrossRef]

Proc SPIE (1)

J. Y. Fu, Z. Zhou, and F. T. S. Yu, "Phase-coded multiplexing using a crossed cylindrical-collimating lens system for volume hologram storage in LiNbO3," in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VIII, F. T. S. Yu and R. Guo, eds., Proc SPIE 4803, 185-189 (2002).
[CrossRef]

Other (2)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

S. Tao, "Spatioangularly multiplexed holographic storage in photorefractive crystals," Ph.D. dissertation (University of London, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Crossed cylindrical-collimating lens system. CL, cylindrical lens; FL, Fourier lens; CR, crystal.

Fig. 2
Fig. 2

Experimental setup for the phase-coded multiplexing using the crossed cylindrical-collimating lens system. SLF, spatial light filter; BS, beam splitter; M, mirror; SLM, spatial light modulator.

Fig. 3
Fig. 3

Relationship between the diffraction efficiency and the rotating angle. Insets, reconstructed images at increasing values of the rotating angle.

Fig. 4
Fig. 4

Relationship between the diffraction efficiency and the rotating angle with a 4 mm × 4 mm piece of black paper. Insets, reconstructed images at increasing values of the rotating angle.

Fig. 5
Fig. 5

Examples for the recall of 36 digital data pages stored with phase-coded multiplexing using the crossed cylindrical-collimating lens system.

Fig. 6
Fig. 6

Flow chart of the correlation recognition.

Fig. 7
Fig. 7

Correlation peak of the 15th image.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N = ( Θ Δ Θ ) ( Φ Δ Φ ) ( 2 π Δ θ ) ,
Δ Θ = 2 λ ( π 2 v 2 ) 1 / 2 π n d cos θ s | sin ( θ r θ s ) | ,
Δ Φ = 2 ( Δ Θ t g θ r ) 1 / 2 ,

Metrics