Abstract

One goal of recent research on plasmonic nanoparticle-based sensors is maximizing nanoparticle sensitivity or shift of resonance peak wavelength per refractive index change. Equally important is a measurement system's peak location uncertainty or shift resolution. We provide systematic analyses and discuss optimization of factors that determine peak location uncertainty, reporting values as low as 0.3nm for the presented scheme. This type of analysis is important, in part, because it provides a means of evaluating detection thresholds for biosensor applications such as analyte binding. We estimate thresholds of 310 streptavidin molecules for the presented scheme and 20 molecules with system improvements.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Haes, D. A. Stuart, S. M. Nie, and R. P. Van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles as biological sensing platforms," J. Fluoresc. 14, 355-367 (2004).
    [CrossRef] [PubMed]
  2. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
    [CrossRef]
  3. A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano. Lett. 3, 1057-1062 (2003).
    [CrossRef]
  4. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
    [CrossRef]
  5. T. Itoh, T. Asahi, and H. Masuhara, "Direct demonstration of environment-sensitive surface plasmon resonance band in single gold nanoparticles," Jpn. J. Appl. Phys. Part 2 41, L76-L78 (2002).
    [CrossRef]
  6. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
    [CrossRef]
  7. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
    [CrossRef]
  8. J. J. Mock, D. Smith, and S. Schultz, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano. Lett. 3, 485-491 (2003).
    [CrossRef]
  9. A. Curry, W. L. Hwang, and A. Wax, "Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture," Opt. Express 14, 6535-6542 (2006).
    [CrossRef] [PubMed]
  10. N. Nath and A. Chilkoti, "Interfacial phase transition of an environmentally responsive elastin biopolymer adsorbed on functionalized gold nanoparticles studied by colloidal surface plasmon resonance," J. Am. Chem. Soc. 123, 8197-8202 (2001).
    [CrossRef] [PubMed]
  11. N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002).
    [CrossRef] [PubMed]
  12. C. Sonnichsen, B. Reinhard, J. Liphard, and A. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
    [CrossRef] [PubMed]
  13. A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano. Lett. 4, 1029-1034 (2004).
    [CrossRef]
  14. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, "Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy," Opt. Express 13, 2668-2677 (2005).
    [CrossRef] [PubMed]
  15. T. Okamoto, "Near-field spectral analysis of metallic beads," in Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001), Vol. 81, pp. 97-122.
    [CrossRef]
  16. D. D. Evanoff, R. L. White, and G. Chumanov, "Measuring the distance dependence of the local electromagnetic field from silver nanoparticles," J. Phys. Chem. B 108, 1522-1524 (2004).
    [CrossRef]
  17. M. Miller and A. Lazarides, "Controlling the sensing volume of metal nanosphere molecular sensors," in Materials Research Society Symposium, J. L. David, P. Taylor, D. McIlroy, L. Merhari, J. B. Pendry, J. T. Borenstein, P. Grodzinski, L. P. Lee, and Z. L. Wang, eds. (Materials Research Society, 2004), paper R6.5.
    [CrossRef]
  18. J. Voros, "The density and refractive index of adsorbing protein layers," Biophys. J. 87, 553-561 (2004).
    [CrossRef] [PubMed]
  19. M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," J. Phys. Chem. B 109, 21556-21565 (2005).
    [CrossRef]
  20. A. Davies and M. S. Levenson, "Estimating the root mean square of a wave front and its uncertainty," Appl. Opt. 40, 6203-6209 (2001).
    [CrossRef]
  21. M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: Relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).
    [CrossRef]

2006 (1)

2005 (3)

C. Sonnichsen, B. Reinhard, J. Liphard, and A. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, "Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy," Opt. Express 13, 2668-2677 (2005).
[CrossRef] [PubMed]

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," J. Phys. Chem. B 109, 21556-21565 (2005).
[CrossRef]

2004 (4)

D. D. Evanoff, R. L. White, and G. Chumanov, "Measuring the distance dependence of the local electromagnetic field from silver nanoparticles," J. Phys. Chem. B 108, 1522-1524 (2004).
[CrossRef]

J. Voros, "The density and refractive index of adsorbing protein layers," Biophys. J. 87, 553-561 (2004).
[CrossRef] [PubMed]

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano. Lett. 4, 1029-1034 (2004).
[CrossRef]

A. J. Haes, D. A. Stuart, S. M. Nie, and R. P. Van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles as biological sensing platforms," J. Fluoresc. 14, 355-367 (2004).
[CrossRef] [PubMed]

2003 (3)

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano. Lett. 3, 1057-1062 (2003).
[CrossRef]

J. J. Mock, D. Smith, and S. Schultz, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano. Lett. 3, 485-491 (2003).
[CrossRef]

2002 (5)

N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002).
[CrossRef] [PubMed]

T. Itoh, T. Asahi, and H. Masuhara, "Direct demonstration of environment-sensitive surface plasmon resonance band in single gold nanoparticles," Jpn. J. Appl. Phys. Part 2 41, L76-L78 (2002).
[CrossRef]

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: Relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).
[CrossRef]

2001 (2)

N. Nath and A. Chilkoti, "Interfacial phase transition of an environmentally responsive elastin biopolymer adsorbed on functionalized gold nanoparticles studied by colloidal surface plasmon resonance," J. Am. Chem. Soc. 123, 8197-8202 (2001).
[CrossRef] [PubMed]

A. Davies and M. S. Levenson, "Estimating the root mean square of a wave front and its uncertainty," Appl. Opt. 40, 6203-6209 (2001).
[CrossRef]

2000 (1)

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Alivisatos, A.

C. Sonnichsen, B. Reinhard, J. Liphard, and A. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Asahi, T.

T. Itoh, T. Asahi, and H. Masuhara, "Direct demonstration of environment-sensitive surface plasmon resonance band in single gold nanoparticles," Jpn. J. Appl. Phys. Part 2 41, L76-L78 (2002).
[CrossRef]

Aussenegg, F. R.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

Chan, V. Z. H.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Chang, L.

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano. Lett. 4, 1029-1034 (2004).
[CrossRef]

Chilkoti, A.

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, "Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy," Opt. Express 13, 2668-2677 (2005).
[CrossRef] [PubMed]

N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002).
[CrossRef] [PubMed]

N. Nath and A. Chilkoti, "Interfacial phase transition of an environmentally responsive elastin biopolymer adsorbed on functionalized gold nanoparticles studied by colloidal surface plasmon resonance," J. Am. Chem. Soc. 123, 8197-8202 (2001).
[CrossRef] [PubMed]

Chumanov, G.

D. D. Evanoff, R. L. White, and G. Chumanov, "Measuring the distance dependence of the local electromagnetic field from silver nanoparticles," J. Phys. Chem. B 108, 1522-1524 (2004).
[CrossRef]

Curry, A.

Davies, A.

Ditlbacher, H.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Evanoff, D. D.

D. D. Evanoff, R. L. White, and G. Chumanov, "Measuring the distance dependence of the local electromagnetic field from silver nanoparticles," J. Phys. Chem. B 108, 1522-1524 (2004).
[CrossRef]

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
[CrossRef]

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
[CrossRef]

Geier, S.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Haes, A.

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano. Lett. 4, 1029-1034 (2004).
[CrossRef]

Haes, A. J.

A. J. Haes, D. A. Stuart, S. M. Nie, and R. P. Van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles as biological sensing platforms," J. Fluoresc. 14, 355-367 (2004).
[CrossRef] [PubMed]

Hall, W.

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano. Lett. 4, 1029-1034 (2004).
[CrossRef]

Hartland, G. V.

M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: Relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).
[CrossRef]

Hecker, N. E.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Hu, M.

M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: Relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).
[CrossRef]

Hwang, W. L.

Itoh, T.

T. Itoh, T. Asahi, and H. Masuhara, "Direct demonstration of environment-sensitive surface plasmon resonance band in single gold nanoparticles," Jpn. J. Appl. Phys. Part 2 41, L76-L78 (2002).
[CrossRef]

Klar, T. A.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
[CrossRef]

Klein, W.

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano. Lett. 4, 1029-1034 (2004).
[CrossRef]

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
[CrossRef]

Krenn, J. R.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Kurzinger, K.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
[CrossRef]

Kuwata, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Lamprecht, B.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Lazarides, A.

M. Miller and A. Lazarides, "Controlling the sensing volume of metal nanosphere molecular sensors," in Materials Research Society Symposium, J. L. David, P. Taylor, D. McIlroy, L. Merhari, J. B. Pendry, J. T. Borenstein, P. Grodzinski, L. P. Lee, and Z. L. Wang, eds. (Materials Research Society, 2004), paper R6.5.
[CrossRef]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," J. Phys. Chem. B 109, 21556-21565 (2005).
[CrossRef]

Levenson, M. S.

Liphard, J.

C. Sonnichsen, B. Reinhard, J. Liphard, and A. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Masuhara, H.

T. Itoh, T. Asahi, and H. Masuhara, "Direct demonstration of environment-sensitive surface plasmon resonance band in single gold nanoparticles," Jpn. J. Appl. Phys. Part 2 41, L76-L78 (2002).
[CrossRef]

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano. Lett. 3, 1057-1062 (2003).
[CrossRef]

Miller, M.

M. Miller and A. Lazarides, "Controlling the sensing volume of metal nanosphere molecular sensors," in Materials Research Society Symposium, J. L. David, P. Taylor, D. McIlroy, L. Merhari, J. B. Pendry, J. T. Borenstein, P. Grodzinski, L. P. Lee, and Z. L. Wang, eds. (Materials Research Society, 2004), paper R6.5.
[CrossRef]

Miller, M. M.

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," J. Phys. Chem. B 109, 21556-21565 (2005).
[CrossRef]

Miyano, K.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Miyazaki, H. T.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Mock, J. J.

J. J. Mock, D. Smith, and S. Schultz, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano. Lett. 3, 485-491 (2003).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

Moller, M.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Nath, N.

N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002).
[CrossRef] [PubMed]

N. Nath and A. Chilkoti, "Interfacial phase transition of an environmentally responsive elastin biopolymer adsorbed on functionalized gold nanoparticles studied by colloidal surface plasmon resonance," J. Am. Chem. Soc. 123, 8197-8202 (2001).
[CrossRef] [PubMed]

Nichtl, A.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
[CrossRef]

Nie, S. M.

A. J. Haes, D. A. Stuart, S. M. Nie, and R. P. Van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles as biological sensing platforms," J. Fluoresc. 14, 355-367 (2004).
[CrossRef] [PubMed]

Nusz, G.

Okamoto, T.

T. Okamoto, "Near-field spectral analysis of metallic beads," in Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001), Vol. 81, pp. 97-122.
[CrossRef]

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
[CrossRef]

Reinhard, B.

C. Sonnichsen, B. Reinhard, J. Liphard, and A. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

Schultz, S.

J. J. Mock, D. Smith, and S. Schultz, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano. Lett. 3, 485-491 (2003).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

Smith, D.

J. J. Mock, D. Smith, and S. Schultz, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano. Lett. 3, 485-491 (2003).
[CrossRef]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

Sonnichsen, C.

C. Sonnichsen, B. Reinhard, J. Liphard, and A. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
[CrossRef]

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Spatz, J. P.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Stuart, D. A.

A. J. Haes, D. A. Stuart, S. M. Nie, and R. P. Van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles as biological sensing platforms," J. Fluoresc. 14, 355-367 (2004).
[CrossRef] [PubMed]

Tamaru, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Van Duyne, R.

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano. Lett. 4, 1029-1034 (2004).
[CrossRef]

Van Duyne, R. P.

A. J. Haes, D. A. Stuart, S. M. Nie, and R. P. Van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles as biological sensing platforms," J. Fluoresc. 14, 355-367 (2004).
[CrossRef] [PubMed]

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano. Lett. 3, 1057-1062 (2003).
[CrossRef]

von Plessen, G.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Voros, J.

J. Voros, "The density and refractive index of adsorbing protein layers," Biophys. J. 87, 553-561 (2004).
[CrossRef] [PubMed]

Wax, A.

White, R. L.

D. D. Evanoff, R. L. White, and G. Chumanov, "Measuring the distance dependence of the local electromagnetic field from silver nanoparticles," J. Phys. Chem. B 108, 1522-1524 (2004).
[CrossRef]

Anal. Chem. (1)

N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Biophys. J. (1)

J. Voros, "The density and refractive index of adsorbing protein layers," Biophys. J. 87, 553-561 (2004).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

N. Nath and A. Chilkoti, "Interfacial phase transition of an environmentally responsive elastin biopolymer adsorbed on functionalized gold nanoparticles studied by colloidal surface plasmon resonance," J. Am. Chem. Soc. 123, 8197-8202 (2001).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002).
[CrossRef]

J. Fluoresc. (1)

A. J. Haes, D. A. Stuart, S. M. Nie, and R. P. Van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles as biological sensing platforms," J. Fluoresc. 14, 355-367 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," J. Phys. Chem. B 109, 21556-21565 (2005).
[CrossRef]

D. D. Evanoff, R. L. White, and G. Chumanov, "Measuring the distance dependence of the local electromagnetic field from silver nanoparticles," J. Phys. Chem. B 108, 1522-1524 (2004).
[CrossRef]

M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: Relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

T. Itoh, T. Asahi, and H. Masuhara, "Direct demonstration of environment-sensitive surface plasmon resonance band in single gold nanoparticles," Jpn. J. Appl. Phys. Part 2 41, L76-L78 (2002).
[CrossRef]

Nano. Lett. (4)

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano. Lett. 3, 935-938 (2003).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano. Lett. 3, 1057-1062 (2003).
[CrossRef]

J. J. Mock, D. Smith, and S. Schultz, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano. Lett. 3, 485-491 (2003).
[CrossRef]

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano. Lett. 4, 1029-1034 (2004).
[CrossRef]

Nat. Biotechnol. (1)

C. Sonnichsen, B. Reinhard, J. Liphard, and A. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Other (2)

T. Okamoto, "Near-field spectral analysis of metallic beads," in Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001), Vol. 81, pp. 97-122.
[CrossRef]

M. Miller and A. Lazarides, "Controlling the sensing volume of metal nanosphere molecular sensors," in Materials Research Society Symposium, J. L. David, P. Taylor, D. McIlroy, L. Merhari, J. B. Pendry, J. T. Borenstein, P. Grodzinski, L. P. Lee, and Z. L. Wang, eds. (Materials Research Society, 2004), paper R6.5.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated and measured total uncertainties versus slit width for 40 × and 100 × objectives. The vertical lines on the left and right (50 and 100 μm ) represent the distance between the first minima of NP diffraction-limited spots, at the image plane, for the 40 × and 100 × objectives, respectively. The calculated values match the measured values well for most data points, indicating that the calculation method accurately accounts for the dominant factors influencing the total uncertainty. The discrepancy for some data points for the 40 × objective is attributed to variability in focus.

Fig. 2
Fig. 2

(Color online) Variation in peak wavelength with NP X position for a 40 × objective at various slit widths. Linear fits reveal a decreasing slope, termed the differential, for the increasing slit width.

Fig. 3
Fig. 3

Differentials due to X and Z (focus) positions versus slit width. The differentials with X approach an asymptotic value of approximately 0.1 nm / pixel ( 0.02 nm / μm ), reaching that value for the 40 × and 100 × objectives at 80 and 100 μm , respectively. This value matches the spectrometer grating's reciprocal linear dispersion. The differentials with Z reach their minimum values for the 40 × and 100 × objectives at slit widths of 100 and 150 μm , respectively, which were the largest slit widths measured.

Fig. 4
Fig. 4

On-axis Airy model predictions of the spectrometer slit width effect on spectral peak uncertainty due to X position for a 100 × objective. For the 20 μm slit width, the predominant effect is truncation of the Airy pattern's radially dependent spectral content, which produces a symmetric variation in peak wavelength for NP image positions offset from the slit center position. Comparison with the experimental results for this case supports the conclusion of the comatic effects' dominance in the experimental results. For the 100 μm slit width, the predominant effect is a shift in the measured spectrum attributable to spatial shifts of the NP image. For both experimental and theoretical results, the spectral shift is roughly linear with the spatial shift and is equal to the spectrometer grating's reciprocal linear dispersion.

Fig. 5
Fig. 5

(Color online) Variation in peak position with Z (focus) for a 40 × objective and various slit widths. Linear fits reveal a decreasing slope, termed the differential, for increasing the slit width.

Fig. 6
Fig. 6

Peak fitting uncertainties for Mie spectra with random noise applied to achieve a desired SNR value. The uncertainties provide a measure of the contribution of peak fitting to the total uncertainty. The uncertainties are the standard deviations in 30 peak measurements of a spectrum after application of random noise of appropriate value to achieve the desired SNR.

Tables (5)

Tables Icon

Table 1 Slit Widths Used in Study

Tables Icon

Table 2 Standard Deviations of Peak Wavelength over all Data

Tables Icon

Table 5 Factor Uncertainties

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

U total 2 = U X 2 + U Z 2 + U Y 2 + U f i t 2 = [ ( λ / X ) V X ] 2 + [ ( λ / Z ) V Z ] 2 + U Y 2 + U f i t 2 ,
X detector = X PSF + α ( λ λ center ) ,
λ shift = [ 1.33 ( 1 p ) + 1.52 p ] S ,
Δ λ shift = 0.19 S Δ p ,
Δ p = ( Δ n v s ) / V ,
Δ n = ( Δ λ shift V ) / ( 0.19 S v s ) .

Metrics