Abstract

Laser speckle contrast imaging (LSCI) was used to monitor thermal-induced changes in the blood flow and the diameter of mesenteric microvessels of normal and tumor bearing mice under 60min treatment at different constant temperatures between 41°C   and   45  °C. The results show that the blood flow and the diameter increase at the beginning and then reach a plateau and finally start to decrease. The lower the temperature, the longer the plateau stays. A t-test indicates that there is no significant difference in plateau values of relative blood flow and relative diameter for the same group. For normal mice, the relative increases in the blood flow and the diameter are 1.26 and 1.41, respectively, while for tumor-bearing mice they are 1.08 and 1.13, respectively. At higher treatment temperature or under longer heat treatment, there are decreases in the blood flow and the diameter, such changes in tumor-bearing mice are more obvious than those in normal mice, which means tumor microvessels are more sensitive to heat than normal. Moreover, thermal induced shrink of microvessel usually occurs sooner than the decrease in blood flow, and the relative change in diameter is larger than that in blood flow. Therefore we may conclude that deformation of vessel is a main factor for changing the blood perfusion of a microvessel.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Falk, R. Issels. "Hyperthermia in oncology," Int. J. Hyperthermia 17, 1-18 (2001).
    [CrossRef] [PubMed]
  2. J. W. Valvano, "Tissue thermal properties and perfusion," in Optical Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Germert, eds. (Plenum, 1995), pp. 469-478.
  3. H. P. Kok, P. M. A. van Haaren, J. D. P. van Dijk, and J. Crezee, "On estimation of the temperature maximum in intraluminal or intracavitary hyperthermia," Int. J. Hyperthermia 21, 287-304 (2005).
    [CrossRef] [PubMed]
  4. B. M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, and M. Motamedi, "Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue," IEEE J. Sel. Top. Quantum Electron. 2, 922-33 (1996).
    [CrossRef]
  5. B. S. Naii, I. B. Choi, W. Y. Oh, J. L. Osborn, and C. W. Song, "Vascular thermal adaptation in tumors and normal tissue in rats," Int. J. Radiat. Oncol. Biol. Phys. 35, 95-101 (1996).
  6. S. L. Bacharach, S. K. Libutti, and J. A. Carrasquillo, "Measuring tumor blood flow with H215O: practical considerations," Nucl. Med. Biol. 27, 671-676 (2000).
    [CrossRef] [PubMed]
  7. C. Sturesson, K. Ivarsson, S. Andersson-Engels, and K.-G. Tranberg, "Changes in local hepatic blood perfusion during interstitial laser-induced thermotherapy of normal rat liver measured by interstitial laser Doppler flowmetry," Lasers Med. Sci. 14, 143-149 (1999).
    [CrossRef]
  8. I. V. Sils, P. C. Szlyk-Modrow, K. A. Tartarini, C. B. Matthew, and R. P. Francesconi, "Effect of nitric oxide synthase inhibition on regional blood flow during hyperthermia," J. Thermal Bio. 26, 1-7 (2001).
    [CrossRef]
  9. E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of depth of burns by laser Doppler perfusion imaging," Burns 27, 561-68 (2001).
    [CrossRef] [PubMed]
  10. J. Liu and L. X. Xu, "Boundary information-based diagnostics on the thermal states of biological bodies," Int. J. Heat Mass Transfer 43, 2827-2839 (2000).
    [CrossRef]
  11. J. Liu and L. X. Xu, "Estimation of blood perfusion using phase shift in temperature response to sinusoidal heat at the skin surface," IEEE Trans. Biomed. Eng. 46, 1037-1043 (1999).
    [CrossRef] [PubMed]
  12. S. R. Paul, P. S. Elaine, and E. T. Diller, "Validation of methodologies for the estimation of blood perfusion using a minimally invasive probe," ASME J. Heat Transfer 362, 109-116 (1998).
  13. J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
    [CrossRef]
  14. J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
    [CrossRef]
  15. H. Cheng, Q. Luo, Z. Wang, H. Gong, S. Chen, W. Liang, and S. Zeng, "Efficient characterization of regional mesenteric blood flow by use of laser speckle imaging," Appl. Opt. 42, 5759-5764 (2003).
    [CrossRef] [PubMed]
  16. H. Cheng, Q. Luo, S. Zeng, S. Chen, W. Luo, and H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43, 5772-5777 (2004).
    [CrossRef] [PubMed]
  17. H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
    [CrossRef] [PubMed]
  18. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
    [CrossRef] [PubMed]
  19. A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981).
    [CrossRef]
  20. C. Cheng, C. Liu, N. Zhang, T. Jia, R. Li, and Z. Xu, "Absolute measurement of roughness and lateral-correlation length of random surfaces by use of the simplified model of image-speckle contrast," Appl. Opt. 41, 4148-4156 (2002).
    [CrossRef] [PubMed]
  21. H. T. Yura and S. G. Hanson, "Comment: absolute measurement of roughness and lateral-correlation length of random surfaces by use of the simplified model of image-speckle contrast," Appl. Opt. 42, 2521-2522 (2003).
    [CrossRef] [PubMed]
  22. C. Cheng, C. Liu, N. Zhang, T. Jia, R. Li, and Z. Xu, "Reply to comment: absolute measurement of roughness and lateral-correlation length of random surfaces by use of the simplified model of image-speckle contrast," Appl. Opt. 42, 2523-2525 (2003).
    [CrossRef]
  23. S. L. Brown and J. W. Hunt, "Different thermal sensitivity of tumor and normal tissue microvascular response during hyperthermia," Int. J. Hyperthermia 8, 501-514 (1992).
    [CrossRef] [PubMed]
  24. J. C. Lin and C. W. Song, "Influence of vascular thermotolerance on the heat-induced changes in blood flow, pO2, and cell survival in tumor," Cancer Res. 53, 2076-2080 (1993).
    [PubMed]
  25. B. Hildebrandt, P. Wust, and O. Ahlers, "The cellular and molecular basis of hyperthermia," Crit. Rev. Oncol. Hemat. 13, 33-56 (2002).
    [CrossRef]

2005 (2)

H. P. Kok, P. M. A. van Haaren, J. D. P. van Dijk, and J. Crezee, "On estimation of the temperature maximum in intraluminal or intracavitary hyperthermia," Int. J. Hyperthermia 21, 287-304 (2005).
[CrossRef] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
[CrossRef] [PubMed]

2004 (2)

H. Cheng, Q. Luo, S. Zeng, S. Chen, W. Luo, and H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43, 5772-5777 (2004).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (2)

2001 (3)

M. Falk, R. Issels. "Hyperthermia in oncology," Int. J. Hyperthermia 17, 1-18 (2001).
[CrossRef] [PubMed]

I. V. Sils, P. C. Szlyk-Modrow, K. A. Tartarini, C. B. Matthew, and R. P. Francesconi, "Effect of nitric oxide synthase inhibition on regional blood flow during hyperthermia," J. Thermal Bio. 26, 1-7 (2001).
[CrossRef]

E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of depth of burns by laser Doppler perfusion imaging," Burns 27, 561-68 (2001).
[CrossRef] [PubMed]

2000 (2)

J. Liu and L. X. Xu, "Boundary information-based diagnostics on the thermal states of biological bodies," Int. J. Heat Mass Transfer 43, 2827-2839 (2000).
[CrossRef]

S. L. Bacharach, S. K. Libutti, and J. A. Carrasquillo, "Measuring tumor blood flow with H215O: practical considerations," Nucl. Med. Biol. 27, 671-676 (2000).
[CrossRef] [PubMed]

1999 (3)

C. Sturesson, K. Ivarsson, S. Andersson-Engels, and K.-G. Tranberg, "Changes in local hepatic blood perfusion during interstitial laser-induced thermotherapy of normal rat liver measured by interstitial laser Doppler flowmetry," Lasers Med. Sci. 14, 143-149 (1999).
[CrossRef]

J. Liu and L. X. Xu, "Estimation of blood perfusion using phase shift in temperature response to sinusoidal heat at the skin surface," IEEE Trans. Biomed. Eng. 46, 1037-1043 (1999).
[CrossRef] [PubMed]

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

1998 (1)

S. R. Paul, P. S. Elaine, and E. T. Diller, "Validation of methodologies for the estimation of blood perfusion using a minimally invasive probe," ASME J. Heat Transfer 362, 109-116 (1998).

1996 (3)

B. M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, and M. Motamedi, "Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue," IEEE J. Sel. Top. Quantum Electron. 2, 922-33 (1996).
[CrossRef]

B. S. Naii, I. B. Choi, W. Y. Oh, J. L. Osborn, and C. W. Song, "Vascular thermal adaptation in tumors and normal tissue in rats," Int. J. Radiat. Oncol. Biol. Phys. 35, 95-101 (1996).

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

1993 (1)

J. C. Lin and C. W. Song, "Influence of vascular thermotolerance on the heat-induced changes in blood flow, pO2, and cell survival in tumor," Cancer Res. 53, 2076-2080 (1993).
[PubMed]

1992 (1)

S. L. Brown and J. W. Hunt, "Different thermal sensitivity of tumor and normal tissue microvascular response during hyperthermia," Int. J. Hyperthermia 8, 501-514 (1992).
[CrossRef] [PubMed]

1981 (1)

A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981).
[CrossRef]

Ahlers, O.

B. Hildebrandt, P. Wust, and O. Ahlers, "The cellular and molecular basis of hyperthermia," Crit. Rev. Oncol. Hemat. 13, 33-56 (2002).
[CrossRef]

Andersson-Engels, S.

C. Sturesson, K. Ivarsson, S. Andersson-Engels, and K.-G. Tranberg, "Changes in local hepatic blood perfusion during interstitial laser-induced thermotherapy of normal rat liver measured by interstitial laser Doppler flowmetry," Lasers Med. Sci. 14, 143-149 (1999).
[CrossRef]

Bacharach, S. L.

S. L. Bacharach, S. K. Libutti, and J. A. Carrasquillo, "Measuring tumor blood flow with H215O: practical considerations," Nucl. Med. Biol. 27, 671-676 (2000).
[CrossRef] [PubMed]

Boas, D. A.

Briers, J. D.

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981).
[CrossRef]

Brown, S. L.

S. L. Brown and J. W. Hunt, "Different thermal sensitivity of tumor and normal tissue microvascular response during hyperthermia," Int. J. Hyperthermia 8, 501-514 (1992).
[CrossRef] [PubMed]

Carrasquillo, J. A.

S. L. Bacharach, S. K. Libutti, and J. A. Carrasquillo, "Measuring tumor blood flow with H215O: practical considerations," Nucl. Med. Biol. 27, 671-676 (2000).
[CrossRef] [PubMed]

Chen, S.

Cheng, C.

Cheng, H.

Choi, I. B.

B. S. Naii, I. B. Choi, W. Y. Oh, J. L. Osborn, and C. W. Song, "Vascular thermal adaptation in tumors and normal tissue in rats," Int. J. Radiat. Oncol. Biol. Phys. 35, 95-101 (1996).

Crezee, J.

H. P. Kok, P. M. A. van Haaren, J. D. P. van Dijk, and J. Crezee, "On estimation of the temperature maximum in intraluminal or intracavitary hyperthermia," Int. J. Hyperthermia 21, 287-304 (2005).
[CrossRef] [PubMed]

Devor, A.

Diller, E. T.

S. R. Paul, P. S. Elaine, and E. T. Diller, "Validation of methodologies for the estimation of blood perfusion using a minimally invasive probe," ASME J. Heat Transfer 362, 109-116 (1998).

Droog, E. J.

E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of depth of burns by laser Doppler perfusion imaging," Burns 27, 561-68 (2001).
[CrossRef] [PubMed]

Dunn, A. K.

Elaine, P. S.

S. R. Paul, P. S. Elaine, and E. T. Diller, "Validation of methodologies for the estimation of blood perfusion using a minimally invasive probe," ASME J. Heat Transfer 362, 109-116 (1998).

Falk, M.

M. Falk, R. Issels. "Hyperthermia in oncology," Int. J. Hyperthermia 17, 1-18 (2001).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981).
[CrossRef]

Francesconi, R. P.

I. V. Sils, P. C. Szlyk-Modrow, K. A. Tartarini, C. B. Matthew, and R. P. Francesconi, "Effect of nitric oxide synthase inhibition on regional blood flow during hyperthermia," J. Thermal Bio. 26, 1-7 (2001).
[CrossRef]

Gong, H.

Hanson, S. G.

He, X. W.

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

Hildebrandt, B.

B. Hildebrandt, P. Wust, and O. Ahlers, "The cellular and molecular basis of hyperthermia," Crit. Rev. Oncol. Hemat. 13, 33-56 (2002).
[CrossRef]

Hunt, J. W.

S. L. Brown and J. W. Hunt, "Different thermal sensitivity of tumor and normal tissue microvascular response during hyperthermia," Int. J. Hyperthermia 8, 501-514 (1992).
[CrossRef] [PubMed]

Issels., R.

M. Falk, R. Issels. "Hyperthermia in oncology," Int. J. Hyperthermia 17, 1-18 (2001).
[CrossRef] [PubMed]

Ivarsson, K.

C. Sturesson, K. Ivarsson, S. Andersson-Engels, and K.-G. Tranberg, "Changes in local hepatic blood perfusion during interstitial laser-induced thermotherapy of normal rat liver measured by interstitial laser Doppler flowmetry," Lasers Med. Sci. 14, 143-149 (1999).
[CrossRef]

Jacques, S. L.

B. M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, and M. Motamedi, "Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue," IEEE J. Sel. Top. Quantum Electron. 2, 922-33 (1996).
[CrossRef]

Jia, T.

Kim, B. M.

B. M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, and M. Motamedi, "Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue," IEEE J. Sel. Top. Quantum Electron. 2, 922-33 (1996).
[CrossRef]

Kok, H. P.

H. P. Kok, P. M. A. van Haaren, J. D. P. van Dijk, and J. Crezee, "On estimation of the temperature maximum in intraluminal or intracavitary hyperthermia," Int. J. Hyperthermia 21, 287-304 (2005).
[CrossRef] [PubMed]

Li, R.

Liang, W.

Libutti, S. K.

S. L. Bacharach, S. K. Libutti, and J. A. Carrasquillo, "Measuring tumor blood flow with H215O: practical considerations," Nucl. Med. Biol. 27, 671-676 (2000).
[CrossRef] [PubMed]

Lin, J. C.

J. C. Lin and C. W. Song, "Influence of vascular thermotolerance on the heat-induced changes in blood flow, pO2, and cell survival in tumor," Cancer Res. 53, 2076-2080 (1993).
[PubMed]

Liu, C.

Liu, J.

J. Liu and L. X. Xu, "Boundary information-based diagnostics on the thermal states of biological bodies," Int. J. Heat Mass Transfer 43, 2827-2839 (2000).
[CrossRef]

J. Liu and L. X. Xu, "Estimation of blood perfusion using phase shift in temperature response to sinusoidal heat at the skin surface," IEEE Trans. Biomed. Eng. 46, 1037-1043 (1999).
[CrossRef] [PubMed]

Liu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Lu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Luo, Q.

Luo, W.

Matthew, C. B.

I. V. Sils, P. C. Szlyk-Modrow, K. A. Tartarini, C. B. Matthew, and R. P. Francesconi, "Effect of nitric oxide synthase inhibition on regional blood flow during hyperthermia," J. Thermal Bio. 26, 1-7 (2001).
[CrossRef]

Motamedi, M.

B. M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, and M. Motamedi, "Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue," IEEE J. Sel. Top. Quantum Electron. 2, 922-33 (1996).
[CrossRef]

Naii, B. S.

B. S. Naii, I. B. Choi, W. Y. Oh, J. L. Osborn, and C. W. Song, "Vascular thermal adaptation in tumors and normal tissue in rats," Int. J. Radiat. Oncol. Biol. Phys. 35, 95-101 (1996).

Oh, W. Y.

B. S. Naii, I. B. Choi, W. Y. Oh, J. L. Osborn, and C. W. Song, "Vascular thermal adaptation in tumors and normal tissue in rats," Int. J. Radiat. Oncol. Biol. Phys. 35, 95-101 (1996).

Osborn, J. L.

B. S. Naii, I. B. Choi, W. Y. Oh, J. L. Osborn, and C. W. Song, "Vascular thermal adaptation in tumors and normal tissue in rats," Int. J. Radiat. Oncol. Biol. Phys. 35, 95-101 (1996).

Paul, S. R.

S. R. Paul, P. S. Elaine, and E. T. Diller, "Validation of methodologies for the estimation of blood perfusion using a minimally invasive probe," ASME J. Heat Transfer 362, 109-116 (1998).

Rastegar, S.

B. M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, and M. Motamedi, "Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue," IEEE J. Sel. Top. Quantum Electron. 2, 922-33 (1996).
[CrossRef]

Richards, G.

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

Sils, I. V.

I. V. Sils, P. C. Szlyk-Modrow, K. A. Tartarini, C. B. Matthew, and R. P. Francesconi, "Effect of nitric oxide synthase inhibition on regional blood flow during hyperthermia," J. Thermal Bio. 26, 1-7 (2001).
[CrossRef]

Sjoberg, F.

E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of depth of burns by laser Doppler perfusion imaging," Burns 27, 561-68 (2001).
[CrossRef] [PubMed]

Song, C. W.

B. S. Naii, I. B. Choi, W. Y. Oh, J. L. Osborn, and C. W. Song, "Vascular thermal adaptation in tumors and normal tissue in rats," Int. J. Radiat. Oncol. Biol. Phys. 35, 95-101 (1996).

J. C. Lin and C. W. Song, "Influence of vascular thermotolerance on the heat-induced changes in blood flow, pO2, and cell survival in tumor," Cancer Res. 53, 2076-2080 (1993).
[PubMed]

Steenbergen, W.

E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of depth of burns by laser Doppler perfusion imaging," Burns 27, 561-68 (2001).
[CrossRef] [PubMed]

Sturesson, C.

C. Sturesson, K. Ivarsson, S. Andersson-Engels, and K.-G. Tranberg, "Changes in local hepatic blood perfusion during interstitial laser-induced thermotherapy of normal rat liver measured by interstitial laser Doppler flowmetry," Lasers Med. Sci. 14, 143-149 (1999).
[CrossRef]

Szlyk-Modrow, P. C.

I. V. Sils, P. C. Szlyk-Modrow, K. A. Tartarini, C. B. Matthew, and R. P. Francesconi, "Effect of nitric oxide synthase inhibition on regional blood flow during hyperthermia," J. Thermal Bio. 26, 1-7 (2001).
[CrossRef]

Tartarini, K. A.

I. V. Sils, P. C. Szlyk-Modrow, K. A. Tartarini, C. B. Matthew, and R. P. Francesconi, "Effect of nitric oxide synthase inhibition on regional blood flow during hyperthermia," J. Thermal Bio. 26, 1-7 (2001).
[CrossRef]

Thomsen, S.

B. M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, and M. Motamedi, "Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue," IEEE J. Sel. Top. Quantum Electron. 2, 922-33 (1996).
[CrossRef]

Tranberg, K.-G.

C. Sturesson, K. Ivarsson, S. Andersson-Engels, and K.-G. Tranberg, "Changes in local hepatic blood perfusion during interstitial laser-induced thermotherapy of normal rat liver measured by interstitial laser Doppler flowmetry," Lasers Med. Sci. 14, 143-149 (1999).
[CrossRef]

Valvano, J. W.

J. W. Valvano, "Tissue thermal properties and perfusion," in Optical Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Germert, eds. (Plenum, 1995), pp. 469-478.

van Dijk, J. D. P.

H. P. Kok, P. M. A. van Haaren, J. D. P. van Dijk, and J. Crezee, "On estimation of the temperature maximum in intraluminal or intracavitary hyperthermia," Int. J. Hyperthermia 21, 287-304 (2005).
[CrossRef] [PubMed]

van Haaren, P. M. A.

H. P. Kok, P. M. A. van Haaren, J. D. P. van Dijk, and J. Crezee, "On estimation of the temperature maximum in intraluminal or intracavitary hyperthermia," Int. J. Hyperthermia 21, 287-304 (2005).
[CrossRef] [PubMed]

Wang, Z.

Webster, S.

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

Wust, P.

B. Hildebrandt, P. Wust, and O. Ahlers, "The cellular and molecular basis of hyperthermia," Crit. Rev. Oncol. Hemat. 13, 33-56 (2002).
[CrossRef]

Xu, L. X.

J. Liu and L. X. Xu, "Boundary information-based diagnostics on the thermal states of biological bodies," Int. J. Heat Mass Transfer 43, 2827-2839 (2000).
[CrossRef]

J. Liu and L. X. Xu, "Estimation of blood perfusion using phase shift in temperature response to sinusoidal heat at the skin surface," IEEE Trans. Biomed. Eng. 46, 1037-1043 (1999).
[CrossRef] [PubMed]

Xu, Z.

Yuan, S.

Yura, H. T.

Zeng, S.

Zhang, N.

Appl. Opt. (6)

ASME J. Heat Transfer (1)

S. R. Paul, P. S. Elaine, and E. T. Diller, "Validation of methodologies for the estimation of blood perfusion using a minimally invasive probe," ASME J. Heat Transfer 362, 109-116 (1998).

Burns (1)

E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of depth of burns by laser Doppler perfusion imaging," Burns 27, 561-68 (2001).
[CrossRef] [PubMed]

Cancer Res. (1)

J. C. Lin and C. W. Song, "Influence of vascular thermotolerance on the heat-induced changes in blood flow, pO2, and cell survival in tumor," Cancer Res. 53, 2076-2080 (1993).
[PubMed]

Crit. Rev. Oncol. Hemat. (1)

B. Hildebrandt, P. Wust, and O. Ahlers, "The cellular and molecular basis of hyperthermia," Crit. Rev. Oncol. Hemat. 13, 33-56 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, and M. Motamedi, "Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue," IEEE J. Sel. Top. Quantum Electron. 2, 922-33 (1996).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

J. Liu and L. X. Xu, "Estimation of blood perfusion using phase shift in temperature response to sinusoidal heat at the skin surface," IEEE Trans. Biomed. Eng. 46, 1037-1043 (1999).
[CrossRef] [PubMed]

Int. J. Heat Mass Transfer (1)

J. Liu and L. X. Xu, "Boundary information-based diagnostics on the thermal states of biological bodies," Int. J. Heat Mass Transfer 43, 2827-2839 (2000).
[CrossRef]

Int. J. Hyperthermia (3)

H. P. Kok, P. M. A. van Haaren, J. D. P. van Dijk, and J. Crezee, "On estimation of the temperature maximum in intraluminal or intracavitary hyperthermia," Int. J. Hyperthermia 21, 287-304 (2005).
[CrossRef] [PubMed]

M. Falk, R. Issels. "Hyperthermia in oncology," Int. J. Hyperthermia 17, 1-18 (2001).
[CrossRef] [PubMed]

S. L. Brown and J. W. Hunt, "Different thermal sensitivity of tumor and normal tissue microvascular response during hyperthermia," Int. J. Hyperthermia 8, 501-514 (1992).
[CrossRef] [PubMed]

Int. J. Radiat. Oncol. Biol. Phys. (1)

B. S. Naii, I. B. Choi, W. Y. Oh, J. L. Osborn, and C. W. Song, "Vascular thermal adaptation in tumors and normal tissue in rats," Int. J. Radiat. Oncol. Biol. Phys. 35, 95-101 (1996).

J. Biomed. Opt. (2)

J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

J. Thermal Bio. (1)

I. V. Sils, P. C. Szlyk-Modrow, K. A. Tartarini, C. B. Matthew, and R. P. Francesconi, "Effect of nitric oxide synthase inhibition on regional blood flow during hyperthermia," J. Thermal Bio. 26, 1-7 (2001).
[CrossRef]

Lasers Med. Sci. (1)

C. Sturesson, K. Ivarsson, S. Andersson-Engels, and K.-G. Tranberg, "Changes in local hepatic blood perfusion during interstitial laser-induced thermotherapy of normal rat liver measured by interstitial laser Doppler flowmetry," Lasers Med. Sci. 14, 143-149 (1999).
[CrossRef]

Nucl. Med. Biol. (1)

S. L. Bacharach, S. K. Libutti, and J. A. Carrasquillo, "Measuring tumor blood flow with H215O: practical considerations," Nucl. Med. Biol. 27, 671-676 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981).
[CrossRef]

Phys. Med. Biol. (1)

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, "Laser speckle imaging of blood flow in microcirculation," Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Other (1)

J. W. Valvano, "Tissue thermal properties and perfusion," in Optical Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Germert, eds. (Plenum, 1995), pp. 469-478.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of (a) the experimental system and (b) the animal model.

Fig. 2
Fig. 2

(a) White-light image of the mesentery of a normal BABI∕c mouse under the treatment of perfusion at 44 ° C . The spots marked A, B, and C are the three temperature monitoring points. (b) Temperature–time curves ( T A , T B , T C ) correspond to A, B, C in (a).

Fig. 3
Fig. 3

Set of typical velocity maps of mesentery at different times under treatment of the hot Krebs solution ( 44 ° C ) , T = 0 min corresponding to the time before heating. (a) Velocity maps of normal mesenteric microvessels of a mouse, (b) velocity maps of tumor-bearing mesenteric microvessels. (Note: the gray scale below the images shows the contrast scale, with the contrast decreasing (and hence the velocity increasing) from left to right. B a r = 100 μ m ).

Fig. 4
Fig. 4

Time course of the changes in (a) the relative blood flow and (b) the diameter of mice mesenteric microvessels under the treatment of different temperatures ( 41   ° C , 42   ° C , 42.5   ° C , 43   ° C , 43.5   ° C , 44   ° C , 44.5   ° C , 45   ° C ) for 60   min . Solid curve data are from tumor-bearing mice; dotted curve data are from normal mice.

Tables (2)

Tables Icon

Table 1 Average Value, Standard Deviation, and Significance of Relative Blood Flow and Diameter a

Tables Icon

Table 2 Average Value, Standard Deviation, and Significance of Relative Blood Flow and Diameter a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C = σ s I = [ τ c 2 T { 1 exp ( 2 T τ c ) } ] 1 / 2 ,
υ c = λ / 2 π τ c ,

Metrics