Abstract

Optical scattering techniques have the potential to provide noninvasive measurements of neural activity with good spatial and temporal resolution. We used the lobster nerve as a model system to investigate and record event-related optical signals with a modulated light source and heterodyne detection system. We observed changes in the transmitted birefringent light intensity, corresponding with electrophysiological measurements of the action potential. The photon delay was below the detection threshold, in part due to the small size of the nerve bundle. Our system allowed us to place an upper bound on the magnitude of the phase change of 0.01°. The physiological stability of the preparation allows comprehensive characterization of biological and instrumentation noise sources for testing optical measurement systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Grinvald, "Optical imaging of architecture and function in the living brain sheds new light on cortical mechanisms underlying visual perception," Brain Topogr. 5, 71-75 (1992).
    [CrossRef] [PubMed]
  2. B. Chance, Q. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, "Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast," Philos. Trans. R. Soc. London Ser. B 352, 707-716 (1997).
    [CrossRef]
  3. Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
    [CrossRef] [PubMed]
  4. L. B. Cohen, R. D. Keynes, and B. Hille, "Light scattering and birefringence changes during nerve activation," Nature 218, 438-441 (1968).
    [CrossRef] [PubMed]
  5. L. B. Cohen, R. D. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
    [PubMed]
  6. D. Landowne, "Molecular motion underlying activation and inactivation of sodium channels in squid giant axons," J. Membr. Biol. 88, 173-185 (1985).
    [CrossRef] [PubMed]
  7. X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, "Cross-polarized reflected light measurement of fast optical responses associated with neural activation," Biophys. J. 88, 4170-4177 (2005).
    [CrossRef] [PubMed]
  8. A. J. Foust, R. M. Beiu, and D. M. Rector, "Optimized birefringence changes during isolated nerve activation," Appl. Opt. 44, 2008-2012 (2005).
    [CrossRef] [PubMed]
  9. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69, 3457-3481 (1998).
    [CrossRef]
  10. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef] [PubMed]
  11. Y. Yang, H. Liu, X. Li, and B. Chance, "Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging," Opt. Eng. 36, 1562-1569 (1997).
    [CrossRef]
  12. T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
    [CrossRef] [PubMed]
  13. G. Gratton and M. Fabiani, "Shedding light on brain function: the event-related optical signal," Trends Cogn. Sci. 5, 357-363 (2001).
    [CrossRef] [PubMed]
  14. M. Fabiani, K. A. Low, E. Wee, J. J. Sable, and G. Gratton, "Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults," J. Cognitive Neuroscience (to be published).
  15. C.-Y. Tse, K.-R. Tien, and T. B. Penney, "Event-related optical imaging reveals the temporal dynamics of right temporal and frontal cortex activation in pre-attentive change detection," NeuroImage 29, 314-320 (2006).
    [CrossRef]
  16. G. Gratton and M. Fabiani, "The event-related optical signal (EROS) in visual cortex: Replicability, consistency, localization, and resolution," Psychophysiology 40, 561-571 (2003).
    [CrossRef] [PubMed]
  17. E. L. Maclin, K. A. Low, J. J. Sable, M. Fabiani, and G. Gratton, "The event-related optical signal to electrical stimulation of the median nerve," NeuroImage 21, 1798-1804 (2004).
    [CrossRef] [PubMed]
  18. F. Syré, H. Obrig, J. Steinbrink, M. Kohl, R. Wenzel, and A. Villringer, "Are VEP correlated fast optical signals detectable in the human adult by non-invasive near-infrared spectroscopy (NIRS)?" Adv. Exp. Med. Biol. 530, 421-431 (2003).
    [CrossRef] [PubMed]
  19. B. A. Fedderson, D. W. Piston, and E. Gratton, "Digital parallel acquisition in frequency domain fluorimetry," Rev. Sci. Instrum. 60, 2929-2936 (1989).
    [CrossRef]
  20. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, "Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared," Opt. Lett. 19, 2062-2064 (1994).
    [CrossRef] [PubMed]
  21. K. Furusawa, "The depolarization of a crustacean nerve by stimulation or oxygen want," J. Physiol. 67, 325-342 (1929).
    [PubMed]
  22. K. M. Carter, J. S. George, and D. M. Rector, "Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve," J. Neurosci. Methods 135, 9-16 (2004).
    [CrossRef] [PubMed]
  23. C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, "The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy," Pediatr. Res. 39, 32-38 (1996).
    [CrossRef] [PubMed]
  24. T. Koyama, A. Iwasaki, Y. Ogoshi, and E. Okada, "Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory," Appl. Opt. 44, 2094-2103 (2005).
    [CrossRef] [PubMed]
  25. N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, "Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies," Rev. Sci. Instrum. 69, 3042-3054 (1998).
    [CrossRef]

2006 (1)

C.-Y. Tse, K.-R. Tien, and T. B. Penney, "Event-related optical imaging reveals the temporal dynamics of right temporal and frontal cortex activation in pre-attentive change detection," NeuroImage 29, 314-320 (2006).
[CrossRef]

2005 (3)

2004 (2)

K. M. Carter, J. S. George, and D. M. Rector, "Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve," J. Neurosci. Methods 135, 9-16 (2004).
[CrossRef] [PubMed]

E. L. Maclin, K. A. Low, J. J. Sable, M. Fabiani, and G. Gratton, "The event-related optical signal to electrical stimulation of the median nerve," NeuroImage 21, 1798-1804 (2004).
[CrossRef] [PubMed]

2003 (2)

F. Syré, H. Obrig, J. Steinbrink, M. Kohl, R. Wenzel, and A. Villringer, "Are VEP correlated fast optical signals detectable in the human adult by non-invasive near-infrared spectroscopy (NIRS)?" Adv. Exp. Med. Biol. 530, 421-431 (2003).
[CrossRef] [PubMed]

G. Gratton and M. Fabiani, "The event-related optical signal (EROS) in visual cortex: Replicability, consistency, localization, and resolution," Psychophysiology 40, 561-571 (2003).
[CrossRef] [PubMed]

2001 (1)

G. Gratton and M. Fabiani, "Shedding light on brain function: the event-related optical signal," Trends Cogn. Sci. 5, 357-363 (2001).
[CrossRef] [PubMed]

2000 (1)

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

1999 (1)

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

1998 (2)

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69, 3457-3481 (1998).
[CrossRef]

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, "Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies," Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

1997 (2)

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, "Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast," Philos. Trans. R. Soc. London Ser. B 352, 707-716 (1997).
[CrossRef]

Y. Yang, H. Liu, X. Li, and B. Chance, "Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging," Opt. Eng. 36, 1562-1569 (1997).
[CrossRef]

1996 (1)

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, "The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy," Pediatr. Res. 39, 32-38 (1996).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

A. Grinvald, "Optical imaging of architecture and function in the living brain sheds new light on cortical mechanisms underlying visual perception," Brain Topogr. 5, 71-75 (1992).
[CrossRef] [PubMed]

1989 (2)

B. A. Fedderson, D. W. Piston, and E. Gratton, "Digital parallel acquisition in frequency domain fluorimetry," Rev. Sci. Instrum. 60, 2929-2936 (1989).
[CrossRef]

M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
[CrossRef] [PubMed]

1985 (1)

D. Landowne, "Molecular motion underlying activation and inactivation of sodium channels in squid giant axons," J. Membr. Biol. 88, 173-185 (1985).
[CrossRef] [PubMed]

1972 (1)

L. B. Cohen, R. D. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
[PubMed]

1968 (1)

L. B. Cohen, R. D. Keynes, and B. Hille, "Light scattering and birefringence changes during nerve activation," Nature 218, 438-441 (1968).
[CrossRef] [PubMed]

1929 (1)

K. Furusawa, "The depolarization of a crustacean nerve by stimulation or oxygen want," J. Physiol. 67, 325-342 (1929).
[PubMed]

Alho, K.

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

Alsop, D. C.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, "Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast," Philos. Trans. R. Soc. London Ser. B 352, 707-716 (1997).
[CrossRef]

Barrowes, B.

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, "Cross-polarized reflected light measurement of fast optical responses associated with neural activation," Biophys. J. 88, 4170-4177 (2005).
[CrossRef] [PubMed]

Beiu, R. M.

Carter, K. M.

K. M. Carter, J. S. George, and D. M. Rector, "Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve," J. Neurosci. Methods 135, 9-16 (2004).
[CrossRef] [PubMed]

Chance, B.

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, "Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies," Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69, 3457-3481 (1998).
[CrossRef]

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, "Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast," Philos. Trans. R. Soc. London Ser. B 352, 707-716 (1997).
[CrossRef]

Y. Yang, H. Liu, X. Li, and B. Chance, "Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging," Opt. Eng. 36, 1562-1569 (1997).
[CrossRef]

M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
[CrossRef] [PubMed]

Cohen, L. B.

L. B. Cohen, R. D. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
[PubMed]

L. B. Cohen, R. D. Keynes, and B. Hille, "Light scattering and birefringence changes during nerve activation," Nature 218, 438-441 (1968).
[CrossRef] [PubMed]

Cooper, C. E.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, "The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy," Pediatr. Res. 39, 32-38 (1996).
[CrossRef] [PubMed]

Cope, M.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69, 3457-3481 (1998).
[CrossRef]

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, "The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy," Pediatr. Res. 39, 32-38 (1996).
[CrossRef] [PubMed]

Cowan, N.

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

Delpy, D. T.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, "The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy," Pediatr. Res. 39, 32-38 (1996).
[CrossRef] [PubMed]

Detre, J. A.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, "Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast," Philos. Trans. R. Soc. London Ser. B 352, 707-716 (1997).
[CrossRef]

Du, C.

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, "Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies," Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

Elwell, C. E.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, "The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy," Pediatr. Res. 39, 32-38 (1996).
[CrossRef] [PubMed]

Fabiani, M.

E. L. Maclin, K. A. Low, J. J. Sable, M. Fabiani, and G. Gratton, "The event-related optical signal to electrical stimulation of the median nerve," NeuroImage 21, 1798-1804 (2004).
[CrossRef] [PubMed]

G. Gratton and M. Fabiani, "The event-related optical signal (EROS) in visual cortex: Replicability, consistency, localization, and resolution," Psychophysiology 40, 561-571 (2003).
[CrossRef] [PubMed]

G. Gratton and M. Fabiani, "Shedding light on brain function: the event-related optical signal," Trends Cogn. Sci. 5, 357-363 (2001).
[CrossRef] [PubMed]

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

M. Fabiani, K. A. Low, E. Wee, J. J. Sable, and G. Gratton, "Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults," J. Cognitive Neuroscience (to be published).

Fantini, S.

Fedderson, B. A.

B. A. Fedderson, D. W. Piston, and E. Gratton, "Digital parallel acquisition in frequency domain fluorimetry," Rev. Sci. Instrum. 60, 2929-2936 (1989).
[CrossRef]

Foust, A.

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, "Cross-polarized reflected light measurement of fast optical responses associated with neural activation," Biophys. J. 88, 4170-4177 (2005).
[CrossRef] [PubMed]

Foust, A. J.

Franceschini, M. A.

Furusawa, K.

K. Furusawa, "The depolarization of a crustacean nerve by stimulation or oxygen want," J. Physiol. 67, 325-342 (1929).
[PubMed]

George, J. S.

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, "Cross-polarized reflected light measurement of fast optical responses associated with neural activation," Biophys. J. 88, 4170-4177 (2005).
[CrossRef] [PubMed]

K. M. Carter, J. S. George, and D. M. Rector, "Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve," J. Neurosci. Methods 135, 9-16 (2004).
[CrossRef] [PubMed]

Gratton, E.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69, 3457-3481 (1998).
[CrossRef]

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, "Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared," Opt. Lett. 19, 2062-2064 (1994).
[CrossRef] [PubMed]

B. A. Fedderson, D. W. Piston, and E. Gratton, "Digital parallel acquisition in frequency domain fluorimetry," Rev. Sci. Instrum. 60, 2929-2936 (1989).
[CrossRef]

Gratton, G.

E. L. Maclin, K. A. Low, J. J. Sable, M. Fabiani, and G. Gratton, "The event-related optical signal to electrical stimulation of the median nerve," NeuroImage 21, 1798-1804 (2004).
[CrossRef] [PubMed]

G. Gratton and M. Fabiani, "The event-related optical signal (EROS) in visual cortex: Replicability, consistency, localization, and resolution," Psychophysiology 40, 561-571 (2003).
[CrossRef] [PubMed]

G. Gratton and M. Fabiani, "Shedding light on brain function: the event-related optical signal," Trends Cogn. Sci. 5, 357-363 (2001).
[CrossRef] [PubMed]

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

M. Fabiani, K. A. Low, E. Wee, J. J. Sable, and G. Gratton, "Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults," J. Cognitive Neuroscience (to be published).

Grinvald, A.

A. Grinvald, "Optical imaging of architecture and function in the living brain sheds new light on cortical mechanisms underlying visual perception," Brain Topogr. 5, 71-75 (1992).
[CrossRef] [PubMed]

Hille, B.

L. B. Cohen, R. D. Keynes, and B. Hille, "Light scattering and birefringence changes during nerve activation," Nature 218, 438-441 (1968).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

Ito, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

Iwasaki, A.

Keynes, R. D.

L. B. Cohen, R. D. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
[PubMed]

L. B. Cohen, R. D. Keynes, and B. Hille, "Light scattering and birefringence changes during nerve activation," Nature 218, 438-441 (1968).
[CrossRef] [PubMed]

Kohl, M.

F. Syré, H. Obrig, J. Steinbrink, M. Kohl, R. Wenzel, and A. Villringer, "Are VEP correlated fast optical signals detectable in the human adult by non-invasive near-infrared spectroscopy (NIRS)?" Adv. Exp. Med. Biol. 530, 421-431 (2003).
[CrossRef] [PubMed]

Koyama, T.

Landowne, D.

D. Landowne, "Molecular motion underlying activation and inactivation of sodium channels in squid giant axons," J. Membr. Biol. 88, 173-185 (1985).
[CrossRef] [PubMed]

L. B. Cohen, R. D. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
[PubMed]

Li, X.

Y. Yang, H. Liu, X. Li, and B. Chance, "Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging," Opt. Eng. 36, 1562-1569 (1997).
[CrossRef]

Liu, H.

Y. Yang, H. Liu, X. Li, and B. Chance, "Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging," Opt. Eng. 36, 1562-1569 (1997).
[CrossRef]

Low, K. A.

E. L. Maclin, K. A. Low, J. J. Sable, M. Fabiani, and G. Gratton, "The event-related optical signal to electrical stimulation of the median nerve," NeuroImage 21, 1798-1804 (2004).
[CrossRef] [PubMed]

M. Fabiani, K. A. Low, E. Wee, J. J. Sable, and G. Gratton, "Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults," J. Cognitive Neuroscience (to be published).

Luo, Q.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, "Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast," Philos. Trans. R. Soc. London Ser. B 352, 707-716 (1997).
[CrossRef]

Ma, H. Y.

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, "Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies," Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

Maclin, E.

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

Maclin, E. L.

E. L. Maclin, K. A. Low, J. J. Sable, M. Fabiani, and G. Gratton, "The event-related optical signal to electrical stimulation of the median nerve," NeuroImage 21, 1798-1804 (2004).
[CrossRef] [PubMed]

Maier, J. S.

Matcher, S. J.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, "The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy," Pediatr. Res. 39, 32-38 (1996).
[CrossRef] [PubMed]

Meek, J. H.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, "The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy," Pediatr. Res. 39, 32-38 (1996).
[CrossRef] [PubMed]

Näätänen, R.

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, "Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast," Philos. Trans. R. Soc. London Ser. B 352, 707-716 (1997).
[CrossRef]

Obrig, H.

F. Syré, H. Obrig, J. Steinbrink, M. Kohl, R. Wenzel, and A. Villringer, "Are VEP correlated fast optical signals detectable in the human adult by non-invasive near-infrared spectroscopy (NIRS)?" Adv. Exp. Med. Biol. 530, 421-431 (2003).
[CrossRef] [PubMed]

Oda, I.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

Oda, M.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

Ogoshi, Y.

Ohta, K.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

Okada, E.

Patterson, M. S.

Penney, T. B.

C.-Y. Tse, K.-R. Tien, and T. B. Penney, "Event-related optical imaging reveals the temporal dynamics of right temporal and frontal cortex activation in pre-attentive change detection," NeuroImage 29, 314-320 (2006).
[CrossRef]

Piston, D. W.

B. A. Fedderson, D. W. Piston, and E. Gratton, "Digital parallel acquisition in frequency domain fluorimetry," Rev. Sci. Instrum. 60, 2929-2936 (1989).
[CrossRef]

Ramanujam, N.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69, 3457-3481 (1998).
[CrossRef]

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, "Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies," Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

Rector, D. M.

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, "Cross-polarized reflected light measurement of fast optical responses associated with neural activation," Biophys. J. 88, 4170-4177 (2005).
[CrossRef] [PubMed]

A. J. Foust, R. M. Beiu, and D. M. Rector, "Optimized birefringence changes during isolated nerve activation," Appl. Opt. 44, 2008-2012 (2005).
[CrossRef] [PubMed]

K. M. Carter, J. S. George, and D. M. Rector, "Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve," J. Neurosci. Methods 135, 9-16 (2004).
[CrossRef] [PubMed]

Rinne, T.

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

Sable, J. J.

E. L. Maclin, K. A. Low, J. J. Sable, M. Fabiani, and G. Gratton, "The event-related optical signal to electrical stimulation of the median nerve," NeuroImage 21, 1798-1804 (2004).
[CrossRef] [PubMed]

M. Fabiani, K. A. Low, E. Wee, J. J. Sable, and G. Gratton, "Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults," J. Cognitive Neuroscience (to be published).

Sinkkonen, J.

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

Steinbrink, J.

F. Syré, H. Obrig, J. Steinbrink, M. Kohl, R. Wenzel, and A. Villringer, "Are VEP correlated fast optical signals detectable in the human adult by non-invasive near-infrared spectroscopy (NIRS)?" Adv. Exp. Med. Biol. 530, 421-431 (2003).
[CrossRef] [PubMed]

Stinard, A.

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

Syré, F.

F. Syré, H. Obrig, J. Steinbrink, M. Kohl, R. Wenzel, and A. Villringer, "Are VEP correlated fast optical signals detectable in the human adult by non-invasive near-infrared spectroscopy (NIRS)?" Adv. Exp. Med. Biol. 530, 421-431 (2003).
[CrossRef] [PubMed]

Tamura, M.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

Tien, K.-R.

C.-Y. Tse, K.-R. Tien, and T. B. Penney, "Event-related optical imaging reveals the temporal dynamics of right temporal and frontal cortex activation in pre-attentive change detection," NeuroImage 29, 314-320 (2006).
[CrossRef]

Tromberg, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69, 3457-3481 (1998).
[CrossRef]

Tse, C.-Y.

C.-Y. Tse, K.-R. Tien, and T. B. Penney, "Event-related optical imaging reveals the temporal dynamics of right temporal and frontal cortex activation in pre-attentive change detection," NeuroImage 29, 314-320 (2006).
[CrossRef]

Villringer, A.

F. Syré, H. Obrig, J. Steinbrink, M. Kohl, R. Wenzel, and A. Villringer, "Are VEP correlated fast optical signals detectable in the human adult by non-invasive near-infrared spectroscopy (NIRS)?" Adv. Exp. Med. Biol. 530, 421-431 (2003).
[CrossRef] [PubMed]

Wada, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

Walker, S. A.

Wee, E.

M. Fabiani, K. A. Low, E. Wee, J. J. Sable, and G. Gratton, "Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults," J. Cognitive Neuroscience (to be published).

Wenzel, R.

F. Syré, H. Obrig, J. Steinbrink, M. Kohl, R. Wenzel, and A. Villringer, "Are VEP correlated fast optical signals detectable in the human adult by non-invasive near-infrared spectroscopy (NIRS)?" Adv. Exp. Med. Biol. 530, 421-431 (2003).
[CrossRef] [PubMed]

Wilson, B. C.

Wyatt, J. S.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, "The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy," Pediatr. Res. 39, 32-38 (1996).
[CrossRef] [PubMed]

Yamada, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

Yamashita, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

Yang, Y.

Y. Yang, H. Liu, X. Li, and B. Chance, "Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging," Opt. Eng. 36, 1562-1569 (1997).
[CrossRef]

Yao, X. C.

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, "Cross-polarized reflected light measurement of fast optical responses associated with neural activation," Biophys. J. 88, 4170-4177 (2005).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (1)

F. Syré, H. Obrig, J. Steinbrink, M. Kohl, R. Wenzel, and A. Villringer, "Are VEP correlated fast optical signals detectable in the human adult by non-invasive near-infrared spectroscopy (NIRS)?" Adv. Exp. Med. Biol. 530, 421-431 (2003).
[CrossRef] [PubMed]

Appl. Opt. (3)

Biophys. J. (1)

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, "Cross-polarized reflected light measurement of fast optical responses associated with neural activation," Biophys. J. 88, 4170-4177 (2005).
[CrossRef] [PubMed]

Brain Topogr. (1)

A. Grinvald, "Optical imaging of architecture and function in the living brain sheds new light on cortical mechanisms underlying visual perception," Brain Topogr. 5, 71-75 (1992).
[CrossRef] [PubMed]

Cognitive Brain Research (1)

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, "Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography," Cognitive Brain Research 9, 339-342 (2000).
[CrossRef] [PubMed]

J. Cognitive Neuroscience (1)

M. Fabiani, K. A. Low, E. Wee, J. J. Sable, and G. Gratton, "Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults," J. Cognitive Neuroscience (to be published).

J. Membr. Biol. (1)

D. Landowne, "Molecular motion underlying activation and inactivation of sodium channels in squid giant axons," J. Membr. Biol. 88, 173-185 (1985).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

K. M. Carter, J. S. George, and D. M. Rector, "Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve," J. Neurosci. Methods 135, 9-16 (2004).
[CrossRef] [PubMed]

J. Physiol. (2)

L. B. Cohen, R. D. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972).
[PubMed]

K. Furusawa, "The depolarization of a crustacean nerve by stimulation or oxygen want," J. Physiol. 67, 325-342 (1929).
[PubMed]

Nature (1)

L. B. Cohen, R. D. Keynes, and B. Hille, "Light scattering and birefringence changes during nerve activation," Nature 218, 438-441 (1968).
[CrossRef] [PubMed]

NeuroImage (3)

E. L. Maclin, K. A. Low, J. J. Sable, M. Fabiani, and G. Gratton, "The event-related optical signal to electrical stimulation of the median nerve," NeuroImage 21, 1798-1804 (2004).
[CrossRef] [PubMed]

C.-Y. Tse, K.-R. Tien, and T. B. Penney, "Event-related optical imaging reveals the temporal dynamics of right temporal and frontal cortex activation in pre-attentive change detection," NeuroImage 29, 314-320 (2006).
[CrossRef]

T. Rinne, G. Gratton, M. Fabiani, N. Cowan, E. Maclin, A. Stinard, J. Sinkkonen, K. Alho, and R. Näätänen, "Scalp-recorded optical signals make sound processing in the auditory cortex visible," NeuroImage 10, 620-624 (1999).
[CrossRef] [PubMed]

Opt. Eng. (1)

Y. Yang, H. Liu, X. Li, and B. Chance, "Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging," Opt. Eng. 36, 1562-1569 (1997).
[CrossRef]

Opt. Lett. (1)

Pediatr. Res. (1)

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, "The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy," Pediatr. Res. 39, 32-38 (1996).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London Ser. B (1)

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, "Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast," Philos. Trans. R. Soc. London Ser. B 352, 707-716 (1997).
[CrossRef]

Psychophysiology (1)

G. Gratton and M. Fabiani, "The event-related optical signal (EROS) in visual cortex: Replicability, consistency, localization, and resolution," Psychophysiology 40, 561-571 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

B. A. Fedderson, D. W. Piston, and E. Gratton, "Digital parallel acquisition in frequency domain fluorimetry," Rev. Sci. Instrum. 60, 2929-2936 (1989).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69, 3457-3481 (1998).
[CrossRef]

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, "Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies," Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

Trends Cogn. Sci. (1)

G. Gratton and M. Fabiani, "Shedding light on brain function: the event-related optical signal," Trends Cogn. Sci. 5, 357-363 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Schematic of the experimental system. Modulated light from a near-infrared LED is collimated by a lens and passes through a polarizer (oriented 45° to the long axis of the nerve), the nerve, and a second polarizer (oriented 90° to the first polarizer). The light is collected by an optical conduit and detected by a PMT in the ISS Oximeter.

Fig. 2
Fig. 2

Typical output of the ISS Oximeter. The dashed line is the dc offset ( V d c ) of the signal. The solid vertical line is V a c ; for a perfect sine wave, V a c is the amplitude.

Fig. 3
Fig. 3

(Color online) Electrical and optical measurements of lobster nerves. The vertical black line indicates the time of the stimulation. Traces from top to bottom are (a) the electrophysiological response, (b) the averaged raw output, (c) the dc offset ( V d c ) , and (d) amplitude ( V a c ) . By way of comparison, plot (e) shows a single trace from an experiment using a cw near-infrared LED and photodiode.

Fig. 4
Fig. 4

(Color online) Top: Illustration of how an increase in the dc level of the output results in phase shifts δ θ n ( + ) and δ θ n ( ) obtained from the zero-crossing method. Bottom: (a) Phase of the output signal, calculated from the zero-crossing points on the rising slope only ( θ n ( + ) ) , (b) plot of ( V d c V a v g ) / V a c , (c) phase calculated correctly, by taking the average of θ n ( + ) and θ n ( ) , and (d) phase calculated from an FFT routine. The vertical black line indicates the time of the stimulation. Plots are offset for clarity.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

V d c ( t ) = 1 N k = t t + 10 τ V k ,
V a c ( t ) = 2 N [ k = t t + 10 τ ( V k V d c ) 2 ] 1 / 2 ,
V t = V d c + V a c sin ( ω t + θ t ) ,
V t V a v g V a c sin ( ω t + θ t ) .
θ n ( + ) = ω t n ( + ) + ( 2 n ) π ,
θ n ( ) = ω t n ( ) + ( 2 n 1 ) π ,
δ θ n ( + ) = ( V d c V a v g ) / V a c , δ θ n ( ) = δ θ n ( + ) .
θ n = ( θ n ( + ) + θ n ( ) ) / 2 .
X ( t ) = k = t t + 10 τ V k e ( 2 π j / τ ) k ,

Metrics