Abstract

We demonstrate a dual-band continuum light source centered at 830 and 1300nm for optical coherence tomography (OCT) generated by pumping a photonic crystal fiber having two closely spaced zero-dispersion wavelengths with a femtosecond laser at 1059nm. By use of polarization control, sidelobe suppression can be improved up to approximately 7.7 dB. By employing compression of the pump pulses, the generated spectrum is smooth and near-Gaussian, resulting in a point-spread function with negligible sidelobes. We demonstrate ultrahigh-resolution OCT imaging of biological tissue in vivo and in vitro using this light source and compare it with conventional-resolution OCT imaging at 1300nm.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers

Stéphane Coen, Alvin Hing Lun Chau, Rainer Leonhardt, John D. Harvey, Jonathan C. Knight, William J. Wadsworth, and Philip St. J. Russell
J. Opt. Soc. Am. B 19(4) 753-764 (2002)

Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source

Pei-Lin Hsiung, Yu Chen, Tony H. Ko, James G. Fujimoto, Christiano J.S. de Matos, Sergei V. Popov, James R. Taylor, and Valentin P. Gapontsev
Opt. Express 12(22) 5287-5295 (2004)

Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography

Yimin Wang, Hyungsik Lim, Frank Wise, Ivan Tomov, J. Stuart Nelson, and Zhongping Chen
J. Opt. Soc. Am. A 22(8) 1492-1499 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription