Abstract

A new technique for parallel recording of reflection photoplethysmography (PPG) signals in a broad spectral band (violet to near-infrared) has been developed, and its potential for assessment of blood microcirculation at various depths from the skin surface is discussed. PPG signals have been simultaneously detected at cw laser wavelength sets comprising 405, 532, 645, 807, and 1064  nm. Various signal baseline responses to breath holding and different shapes of the PPG pulses originated from the same heartbeat but recorded at different wavelengths have been observed, indicating a depth variety of the skin blood pulsation dynamics.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Spigulis, "Optical noninvasive monitoring of skin blood pulsations," Appl. Opt. 44, 1850-1857 (2005).
    [CrossRef] [PubMed]
  2. H. Ugnell and P. Å. Öberg, "Time variable photoplethysmographyc signal: its dependence on light wavelength and sample volume," in Medical Sensors II and Fiber Optic Sensors, A. M. V. Scheggi, F. Baldini, P. R. Coulet, and O. S. Wolfbeis, eds., Proc. SPIE 2331, 89-97 (1995).
    [CrossRef]
  3. E. Kohen, R. Santus, and J. G. Hirschberg, Photobiology (Academic, 1995), p. 308.
  4. A. Johansson, "Photoplethysmography in multiparameter monitoring of cardiorespiratory function," Ph.D. dissertation (Linköping University, 2000).
  5. L. G. Lindberg and P. Å. Öberg, "Photoplethysmography. Part 2. Influence of light source wavelength," Med. Biol. Eng. Comput. 29, 48-54 (1991).
    [CrossRef] [PubMed]
  6. J. R. Hales, R. G. Roberts, R. A. Westerman, F. R. Stephens, and A. A. Fawcett, "Evidence for skin microvascular compartmentalization by laser-Doppler and photoplethysmographic techniques," Int. J. Microcirc. Clin. Exp. 12, 99-104 (1993).
    [PubMed]
  7. M. Sandberg, T. Lundeberg, L. G. Lindberg, and B. Gerdle, "Effects of acupuncture on skin and muscle blood flow in healthy subjects," Eur. J. Appl. Physiol. 90, 114-119 (2003).
    [CrossRef] [PubMed]

2005 (1)

2003 (1)

M. Sandberg, T. Lundeberg, L. G. Lindberg, and B. Gerdle, "Effects of acupuncture on skin and muscle blood flow in healthy subjects," Eur. J. Appl. Physiol. 90, 114-119 (2003).
[CrossRef] [PubMed]

1995 (1)

H. Ugnell and P. Å. Öberg, "Time variable photoplethysmographyc signal: its dependence on light wavelength and sample volume," in Medical Sensors II and Fiber Optic Sensors, A. M. V. Scheggi, F. Baldini, P. R. Coulet, and O. S. Wolfbeis, eds., Proc. SPIE 2331, 89-97 (1995).
[CrossRef]

1993 (1)

J. R. Hales, R. G. Roberts, R. A. Westerman, F. R. Stephens, and A. A. Fawcett, "Evidence for skin microvascular compartmentalization by laser-Doppler and photoplethysmographic techniques," Int. J. Microcirc. Clin. Exp. 12, 99-104 (1993).
[PubMed]

1991 (1)

L. G. Lindberg and P. Å. Öberg, "Photoplethysmography. Part 2. Influence of light source wavelength," Med. Biol. Eng. Comput. 29, 48-54 (1991).
[CrossRef] [PubMed]

Fawcett, A. A.

J. R. Hales, R. G. Roberts, R. A. Westerman, F. R. Stephens, and A. A. Fawcett, "Evidence for skin microvascular compartmentalization by laser-Doppler and photoplethysmographic techniques," Int. J. Microcirc. Clin. Exp. 12, 99-104 (1993).
[PubMed]

Gerdle, B.

M. Sandberg, T. Lundeberg, L. G. Lindberg, and B. Gerdle, "Effects of acupuncture on skin and muscle blood flow in healthy subjects," Eur. J. Appl. Physiol. 90, 114-119 (2003).
[CrossRef] [PubMed]

Hales, J. R.

J. R. Hales, R. G. Roberts, R. A. Westerman, F. R. Stephens, and A. A. Fawcett, "Evidence for skin microvascular compartmentalization by laser-Doppler and photoplethysmographic techniques," Int. J. Microcirc. Clin. Exp. 12, 99-104 (1993).
[PubMed]

Hirschberg, J. G.

E. Kohen, R. Santus, and J. G. Hirschberg, Photobiology (Academic, 1995), p. 308.

Johansson, A.

A. Johansson, "Photoplethysmography in multiparameter monitoring of cardiorespiratory function," Ph.D. dissertation (Linköping University, 2000).

Kohen, E.

E. Kohen, R. Santus, and J. G. Hirschberg, Photobiology (Academic, 1995), p. 308.

Lindberg, L. G.

M. Sandberg, T. Lundeberg, L. G. Lindberg, and B. Gerdle, "Effects of acupuncture on skin and muscle blood flow in healthy subjects," Eur. J. Appl. Physiol. 90, 114-119 (2003).
[CrossRef] [PubMed]

L. G. Lindberg and P. Å. Öberg, "Photoplethysmography. Part 2. Influence of light source wavelength," Med. Biol. Eng. Comput. 29, 48-54 (1991).
[CrossRef] [PubMed]

Lundeberg, T.

M. Sandberg, T. Lundeberg, L. G. Lindberg, and B. Gerdle, "Effects of acupuncture on skin and muscle blood flow in healthy subjects," Eur. J. Appl. Physiol. 90, 114-119 (2003).
[CrossRef] [PubMed]

Öberg, P. Å.

H. Ugnell and P. Å. Öberg, "Time variable photoplethysmographyc signal: its dependence on light wavelength and sample volume," in Medical Sensors II and Fiber Optic Sensors, A. M. V. Scheggi, F. Baldini, P. R. Coulet, and O. S. Wolfbeis, eds., Proc. SPIE 2331, 89-97 (1995).
[CrossRef]

L. G. Lindberg and P. Å. Öberg, "Photoplethysmography. Part 2. Influence of light source wavelength," Med. Biol. Eng. Comput. 29, 48-54 (1991).
[CrossRef] [PubMed]

Roberts, R. G.

J. R. Hales, R. G. Roberts, R. A. Westerman, F. R. Stephens, and A. A. Fawcett, "Evidence for skin microvascular compartmentalization by laser-Doppler and photoplethysmographic techniques," Int. J. Microcirc. Clin. Exp. 12, 99-104 (1993).
[PubMed]

Sandberg, M.

M. Sandberg, T. Lundeberg, L. G. Lindberg, and B. Gerdle, "Effects of acupuncture on skin and muscle blood flow in healthy subjects," Eur. J. Appl. Physiol. 90, 114-119 (2003).
[CrossRef] [PubMed]

Santus, R.

E. Kohen, R. Santus, and J. G. Hirschberg, Photobiology (Academic, 1995), p. 308.

Spigulis, J.

Stephens, F. R.

J. R. Hales, R. G. Roberts, R. A. Westerman, F. R. Stephens, and A. A. Fawcett, "Evidence for skin microvascular compartmentalization by laser-Doppler and photoplethysmographic techniques," Int. J. Microcirc. Clin. Exp. 12, 99-104 (1993).
[PubMed]

Ugnell, H.

H. Ugnell and P. Å. Öberg, "Time variable photoplethysmographyc signal: its dependence on light wavelength and sample volume," in Medical Sensors II and Fiber Optic Sensors, A. M. V. Scheggi, F. Baldini, P. R. Coulet, and O. S. Wolfbeis, eds., Proc. SPIE 2331, 89-97 (1995).
[CrossRef]

Westerman, R. A.

J. R. Hales, R. G. Roberts, R. A. Westerman, F. R. Stephens, and A. A. Fawcett, "Evidence for skin microvascular compartmentalization by laser-Doppler and photoplethysmographic techniques," Int. J. Microcirc. Clin. Exp. 12, 99-104 (1993).
[PubMed]

Appl. Opt. (1)

Eur. J. Appl. Physiol. (1)

M. Sandberg, T. Lundeberg, L. G. Lindberg, and B. Gerdle, "Effects of acupuncture on skin and muscle blood flow in healthy subjects," Eur. J. Appl. Physiol. 90, 114-119 (2003).
[CrossRef] [PubMed]

Int. J. Microcirc. Clin. Exp. (1)

J. R. Hales, R. G. Roberts, R. A. Westerman, F. R. Stephens, and A. A. Fawcett, "Evidence for skin microvascular compartmentalization by laser-Doppler and photoplethysmographic techniques," Int. J. Microcirc. Clin. Exp. 12, 99-104 (1993).
[PubMed]

Med. Biol. Eng. Comput. (1)

L. G. Lindberg and P. Å. Öberg, "Photoplethysmography. Part 2. Influence of light source wavelength," Med. Biol. Eng. Comput. 29, 48-54 (1991).
[CrossRef] [PubMed]

Proc. SPIE (1)

H. Ugnell and P. Å. Öberg, "Time variable photoplethysmographyc signal: its dependence on light wavelength and sample volume," in Medical Sensors II and Fiber Optic Sensors, A. M. V. Scheggi, F. Baldini, P. R. Coulet, and O. S. Wolfbeis, eds., Proc. SPIE 2331, 89-97 (1995).
[CrossRef]

Other (2)

E. Kohen, R. Santus, and J. G. Hirschberg, Photobiology (Academic, 1995), p. 308.

A. Johansson, "Photoplethysmography in multiparameter monitoring of cardiorespiratory function," Ph.D. dissertation (Linköping University, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Wavelength dependence of the radiation mean penetration depth under the skin surface [calculated data (Ref. [3])].

Fig. 2
Fig. 2

Setup scheme for multiwavelength reflection PPG.

Fig. 3
Fig. 3

Principle of the measurement data processing: time-resolved PPG signal extraction from the intensity-wavelength-time data set (four spectral peaks represent the four selected wavelengths for intensity-time analysis).

Fig. 4
Fig. 4

PPG signal sequences detected simultaneously at three laser wavelengths in the (a) visible and (b) red-NIR spectral ranges during the breath-holding exercise.

Fig. 5
Fig. 5

Comparison of multiwavelength PPG pulse shapes in the visible spectral range: (a), (b) volunteer 1; (c), (d) volunteer 2. Right: enlarged normalized same-heartbeat pulses.

Fig. 6
Fig. 6

Comparison of multiwavelength PPG pulse shapes in the red-NIR spectral range: (a), (b) volunteer 1; (c), (d) volunteer 2. Right: enlarged normalized same-heartbeat pulses.

Fig. 7
Fig. 7

Typical changes in visible multiwavelength PPG signals with increasing probe-skin pressure.

Metrics