Abstract

The absorption coefficient, scattering coefficient, and effective scattering phase function of human red blood cells (RBCs) in saline solution were determined for eight different hematocrits (Hcts) between 0.84% and 42.1% in the wavelength range of 2501100  nm using integrating sphere measurements and inverse Monte Carlo simulation. To allow for biological variability, averaged optical parameters were determined under flow conditions for ten different human blood samples. Based on this standard blood, empirical model functions are presented for the calculation of Hct-dependent optical properties for the RBCs. Changes in the optical properties when saline solution is replaced by blood plasma as the suspension medium were also investigated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
    [CrossRef]
  2. M. Friebel and M. Meinke, "Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements," J. Biomed. Opt. 10, 064019 (2005).
    [CrossRef]
  3. M. Friebel and M. Meinke, "Model function to calculate the refractive index of native hemoglobin in the range of 250-1100 nm dependent on concentration," Appl. Opt. 45, 2838-2842 (2006).
    [CrossRef] [PubMed]
  4. L. G. Lindberg and P. A. Oberg, "Optical properties of blood in motion," Opt. Eng. 32, 253-257 (1993).
    [CrossRef]
  5. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, "Optical properties of platelets and blood plasma and their influence on the optical behaviour of whole blood in the visible to near infrared wavelength range," J. Biomed. Opt. 12, 014024 (2007).
    [CrossRef] [PubMed]
  6. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996).
    [CrossRef]
  7. M. Friebel, A. Roggan, G. Müller, and M. Meinke, "Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions," J. Biomed. Opt. 11, 031021 (2006).
  8. M. Hammer, A. N. Yaroslavsky, and D. Schweitzer, "A scattering phase function for blood with physiological haematocrit," Phys. Med. Biol. 46, N65-N69 (2001).
    [CrossRef] [PubMed]
  9. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements," J. Biomed. Opt. 4, 47-53 (1999).
    [CrossRef]
  10. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, "Single scattering by red blood cells," Appl. Opt. 37, 7410-7418 (1998).
    [CrossRef]
  11. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Different phase function approximations to determine optical properties of blood: a comparison," in Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology, A. V. Priezzhev, T. Asakura, and R. C. Leif, eds., Proc. SPIE 2982, 324-330 (1997).
    [CrossRef]
  12. A. Nilsson, P. Alsholm, A. Karlson, and S. Andersson-Engels, "T-matrix computation of light scattering by red blood cells," Appl. Opt. 37, 2735-2748 (1998).
    [CrossRef]
  13. J. M. Steinke and A. P. Sheperd, "Comparision of Mie theory and light scattering of red blood cells," Appl. Opt. 27, 4027-4033 (1988).
    [CrossRef] [PubMed]
  14. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, D. M. de Bruin, and T. G. van Leeuwen, "Hematocrit-dependence of the scattering coefficient of blood determined by optical coherence tomography," in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc. SPIE 5861, 58610W (2005).
    [CrossRef]
  15. M. Meinke, I. Gersonde, M. Friebel, J. Helfmann, and G. Müller, "Chemometric determination of blood parameters using visible-near-infrared spectra," Appl. Spectrosc. 59, 826-835 (2005).
    [CrossRef] [PubMed]
  16. A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-Engels, "Influence of cell shape and aggregate formation on the optical properties of flowing whole blood," Appl. Opt. 42, 1384-1394 (2003).
    [CrossRef] [PubMed]
  17. J. Lademann, H. Richter, W. Sterry, and A. V. Priezzhev, "Diagnostic potential of erythrocytes aggregation and sedimentation measurements in whole blood," in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 4263, 106-111 (2003).
    [CrossRef]
  18. R. Bayer, S. Çaglayan, and B. Günther, "Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction," in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE 2136, 105-113 (1994).
    [CrossRef]
  19. A. H. Gandjbakhche, P. Mills, and P. Snabre, "Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension," Appl. Opt. 33, 1070-1078 (1994).
    [PubMed]
  20. A. Priezzhev, S. G. Khatsevich, and V. Lopatin, "Asymmetry of light backscattering from Couette flow of RBC suspensions: application for biomonitoring of blood samples," in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H. Foth, N. Krasner, R. Marchesini, and H. Podbielska, eds., Proc. SPIE 3567, 213-222 (1999).
    [CrossRef]
  21. A. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, "Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique," J. Biomed. Opt. 4, 76-84 (1999).
    [CrossRef]
  22. V. S. Lee and L. Tarassenko, "Absorption and multiple scattering by suspensions of aligned red blood cells," J. Opt. Soc. Am. A 8, 1135-1141 (1991).
    [CrossRef] [PubMed]
  23. L. Reynolds and N. McCormick, "Approximate two-parameter phase function for light scattering," J. Opt. Soc. Am. 70, 1206-1212 (1980).
    [CrossRef]
  24. A. Roggan, O. Minet, C. Schröder, and G. Müller, "Measurements of optical tissue properties using integrating sphere technique," in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., Proc. SPIE IS11, 149-165 (1993).
  25. R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 119-137 (1986).
    [CrossRef] [PubMed]
  26. V. Twersky, "Absorption and multiple scattering by biological suspensions," J. Opt. Soc. Am. 60, 1084-1093 (1970).
    [CrossRef] [PubMed]
  27. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 1, pp. 65-66.

2007

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, "Optical properties of platelets and blood plasma and their influence on the optical behaviour of whole blood in the visible to near infrared wavelength range," J. Biomed. Opt. 12, 014024 (2007).
[CrossRef] [PubMed]

2006

2005

M. Friebel and M. Meinke, "Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements," J. Biomed. Opt. 10, 064019 (2005).
[CrossRef]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, D. M. de Bruin, and T. G. van Leeuwen, "Hematocrit-dependence of the scattering coefficient of blood determined by optical coherence tomography," in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc. SPIE 5861, 58610W (2005).
[CrossRef]

M. Meinke, I. Gersonde, M. Friebel, J. Helfmann, and G. Müller, "Chemometric determination of blood parameters using visible-near-infrared spectra," Appl. Spectrosc. 59, 826-835 (2005).
[CrossRef] [PubMed]

2003

A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-Engels, "Influence of cell shape and aggregate formation on the optical properties of flowing whole blood," Appl. Opt. 42, 1384-1394 (2003).
[CrossRef] [PubMed]

J. Lademann, H. Richter, W. Sterry, and A. V. Priezzhev, "Diagnostic potential of erythrocytes aggregation and sedimentation measurements in whole blood," in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 4263, 106-111 (2003).
[CrossRef]

2001

M. Hammer, A. N. Yaroslavsky, and D. Schweitzer, "A scattering phase function for blood with physiological haematocrit," Phys. Med. Biol. 46, N65-N69 (2001).
[CrossRef] [PubMed]

1999

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements," J. Biomed. Opt. 4, 47-53 (1999).
[CrossRef]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

A. Priezzhev, S. G. Khatsevich, and V. Lopatin, "Asymmetry of light backscattering from Couette flow of RBC suspensions: application for biomonitoring of blood samples," in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H. Foth, N. Krasner, R. Marchesini, and H. Podbielska, eds., Proc. SPIE 3567, 213-222 (1999).
[CrossRef]

A. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, "Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique," J. Biomed. Opt. 4, 76-84 (1999).
[CrossRef]

1998

1997

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Different phase function approximations to determine optical properties of blood: a comparison," in Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology, A. V. Priezzhev, T. Asakura, and R. C. Leif, eds., Proc. SPIE 2982, 324-330 (1997).
[CrossRef]

1996

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996).
[CrossRef]

1994

R. Bayer, S. Çaglayan, and B. Günther, "Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction," in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE 2136, 105-113 (1994).
[CrossRef]

A. H. Gandjbakhche, P. Mills, and P. Snabre, "Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension," Appl. Opt. 33, 1070-1078 (1994).
[PubMed]

1993

L. G. Lindberg and P. A. Oberg, "Optical properties of blood in motion," Opt. Eng. 32, 253-257 (1993).
[CrossRef]

A. Roggan, O. Minet, C. Schröder, and G. Müller, "Measurements of optical tissue properties using integrating sphere technique," in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., Proc. SPIE IS11, 149-165 (1993).

1991

1988

1986

R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 119-137 (1986).
[CrossRef] [PubMed]

1980

1970

Aalders, M. C. G.

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, D. M. de Bruin, and T. G. van Leeuwen, "Hematocrit-dependence of the scattering coefficient of blood determined by optical coherence tomography," in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc. SPIE 5861, 58610W (2005).
[CrossRef]

Alsholm, P.

Andersson-Engels, S.

Aruna, P.

Bayer, R.

R. Bayer, S. Çaglayan, and B. Günther, "Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction," in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE 2136, 105-113 (1994).
[CrossRef]

Çaglayan, S.

R. Bayer, S. Çaglayan, and B. Günther, "Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction," in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE 2136, 105-113 (1994).
[CrossRef]

de Bruin, D. M.

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, D. M. de Bruin, and T. G. van Leeuwen, "Hematocrit-dependence of the scattering coefficient of blood determined by optical coherence tomography," in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc. SPIE 5861, 58610W (2005).
[CrossRef]

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

Enejder, A. M. K.

Faber, D. J.

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, D. M. de Bruin, and T. G. van Leeuwen, "Hematocrit-dependence of the scattering coefficient of blood determined by optical coherence tomography," in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc. SPIE 5861, 58610W (2005).
[CrossRef]

Firsov, N. N.

A. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, "Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique," J. Biomed. Opt. 4, 76-84 (1999).
[CrossRef]

Friebel, M.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, "Optical properties of platelets and blood plasma and their influence on the optical behaviour of whole blood in the visible to near infrared wavelength range," J. Biomed. Opt. 12, 014024 (2007).
[CrossRef] [PubMed]

M. Friebel and M. Meinke, "Model function to calculate the refractive index of native hemoglobin in the range of 250-1100 nm dependent on concentration," Appl. Opt. 45, 2838-2842 (2006).
[CrossRef] [PubMed]

M. Friebel and M. Meinke, "Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements," J. Biomed. Opt. 10, 064019 (2005).
[CrossRef]

M. Meinke, I. Gersonde, M. Friebel, J. Helfmann, and G. Müller, "Chemometric determination of blood parameters using visible-near-infrared spectra," Appl. Spectrosc. 59, 826-835 (2005).
[CrossRef] [PubMed]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

M. Friebel, A. Roggan, G. Müller, and M. Meinke, "Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions," J. Biomed. Opt. 11, 031021 (2006).

Gandjbakhche, A. H.

Gersonde, I.

Goldbach, T.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements," J. Biomed. Opt. 4, 47-53 (1999).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Different phase function approximations to determine optical properties of blood: a comparison," in Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology, A. V. Priezzhev, T. Asakura, and R. C. Leif, eds., Proc. SPIE 2982, 324-330 (1997).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996).
[CrossRef]

Günther, B.

R. Bayer, S. Çaglayan, and B. Günther, "Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction," in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE 2136, 105-113 (1994).
[CrossRef]

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

Hammer, M.

M. Hammer, A. N. Yaroslavsky, and D. Schweitzer, "A scattering phase function for blood with physiological haematocrit," Phys. Med. Biol. 46, N65-N69 (2001).
[CrossRef] [PubMed]

M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, "Single scattering by red blood cells," Appl. Opt. 37, 7410-7418 (1998).
[CrossRef]

Helfmann, J.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, "Optical properties of platelets and blood plasma and their influence on the optical behaviour of whole blood in the visible to near infrared wavelength range," J. Biomed. Opt. 12, 014024 (2007).
[CrossRef] [PubMed]

M. Meinke, I. Gersonde, M. Friebel, J. Helfmann, and G. Müller, "Chemometric determination of blood parameters using visible-near-infrared spectra," Appl. Spectrosc. 59, 826-835 (2005).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 1, pp. 65-66.

Karlson, A.

Khatsevich, S. G.

A. Priezzhev, S. G. Khatsevich, and V. Lopatin, "Asymmetry of light backscattering from Couette flow of RBC suspensions: application for biomonitoring of blood samples," in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H. Foth, N. Krasner, R. Marchesini, and H. Podbielska, eds., Proc. SPIE 3567, 213-222 (1999).
[CrossRef]

Kolb, A.

Lademann, J.

J. Lademann, H. Richter, W. Sterry, and A. V. Priezzhev, "Diagnostic potential of erythrocytes aggregation and sedimentation measurements in whole blood," in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 4263, 106-111 (2003).
[CrossRef]

Lee, V. S.

Lindberg, L. G.

L. G. Lindberg and P. A. Oberg, "Optical properties of blood in motion," Opt. Eng. 32, 253-257 (1993).
[CrossRef]

Lopatin, V.

A. Priezzhev, S. G. Khatsevich, and V. Lopatin, "Asymmetry of light backscattering from Couette flow of RBC suspensions: application for biomonitoring of blood samples," in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H. Foth, N. Krasner, R. Marchesini, and H. Podbielska, eds., Proc. SPIE 3567, 213-222 (1999).
[CrossRef]

McCormick, N.

Meinke, M.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, "Optical properties of platelets and blood plasma and their influence on the optical behaviour of whole blood in the visible to near infrared wavelength range," J. Biomed. Opt. 12, 014024 (2007).
[CrossRef] [PubMed]

M. Friebel and M. Meinke, "Model function to calculate the refractive index of native hemoglobin in the range of 250-1100 nm dependent on concentration," Appl. Opt. 45, 2838-2842 (2006).
[CrossRef] [PubMed]

M. Friebel and M. Meinke, "Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements," J. Biomed. Opt. 10, 064019 (2005).
[CrossRef]

M. Meinke, I. Gersonde, M. Friebel, J. Helfmann, and G. Müller, "Chemometric determination of blood parameters using visible-near-infrared spectra," Appl. Spectrosc. 59, 826-835 (2005).
[CrossRef] [PubMed]

M. Friebel, A. Roggan, G. Müller, and M. Meinke, "Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions," J. Biomed. Opt. 11, 031021 (2006).

Michel, B.

Mills, P.

Minet, O.

A. Roggan, O. Minet, C. Schröder, and G. Müller, "Measurements of optical tissue properties using integrating sphere technique," in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., Proc. SPIE IS11, 149-165 (1993).

Müller, G.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, "Optical properties of platelets and blood plasma and their influence on the optical behaviour of whole blood in the visible to near infrared wavelength range," J. Biomed. Opt. 12, 014024 (2007).
[CrossRef] [PubMed]

M. Meinke, I. Gersonde, M. Friebel, J. Helfmann, and G. Müller, "Chemometric determination of blood parameters using visible-near-infrared spectra," Appl. Spectrosc. 59, 826-835 (2005).
[CrossRef] [PubMed]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

A. Roggan, O. Minet, C. Schröder, and G. Müller, "Measurements of optical tissue properties using integrating sphere technique," in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., Proc. SPIE IS11, 149-165 (1993).

M. Friebel, A. Roggan, G. Müller, and M. Meinke, "Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions," J. Biomed. Opt. 11, 031021 (2006).

Nilsson, A.

Oberg, P. A.

L. G. Lindberg and P. A. Oberg, "Optical properties of blood in motion," Opt. Eng. 32, 253-257 (1993).
[CrossRef]

Pittman, R. N.

R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 119-137 (1986).
[CrossRef] [PubMed]

Priezzhev, A.

A. Priezzhev, S. G. Khatsevich, and V. Lopatin, "Asymmetry of light backscattering from Couette flow of RBC suspensions: application for biomonitoring of blood samples," in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H. Foth, N. Krasner, R. Marchesini, and H. Podbielska, eds., Proc. SPIE 3567, 213-222 (1999).
[CrossRef]

A. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, "Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique," J. Biomed. Opt. 4, 76-84 (1999).
[CrossRef]

Priezzhev, A. V.

J. Lademann, H. Richter, W. Sterry, and A. V. Priezzhev, "Diagnostic potential of erythrocytes aggregation and sedimentation measurements in whole blood," in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 4263, 106-111 (2003).
[CrossRef]

Reynolds, L.

Richter, H.

J. Lademann, H. Richter, W. Sterry, and A. V. Priezzhev, "Diagnostic potential of erythrocytes aggregation and sedimentation measurements in whole blood," in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 4263, 106-111 (2003).
[CrossRef]

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

A. Roggan, O. Minet, C. Schröder, and G. Müller, "Measurements of optical tissue properties using integrating sphere technique," in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., Proc. SPIE IS11, 149-165 (1993).

M. Friebel, A. Roggan, G. Müller, and M. Meinke, "Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions," J. Biomed. Opt. 11, 031021 (2006).

Ryaboshapka, O. M.

A. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, "Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique," J. Biomed. Opt. 4, 76-84 (1999).
[CrossRef]

Schröder, C.

A. Roggan, O. Minet, C. Schröder, and G. Müller, "Measurements of optical tissue properties using integrating sphere technique," in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., Proc. SPIE IS11, 149-165 (1993).

Schwarzmaier, H. J.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements," J. Biomed. Opt. 4, 47-53 (1999).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Different phase function approximations to determine optical properties of blood: a comparison," in Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology, A. V. Priezzhev, T. Asakura, and R. C. Leif, eds., Proc. SPIE 2982, 324-330 (1997).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996).
[CrossRef]

Schweitzer, D.

M. Hammer, A. N. Yaroslavsky, and D. Schweitzer, "A scattering phase function for blood with physiological haematocrit," Phys. Med. Biol. 46, N65-N69 (2001).
[CrossRef] [PubMed]

M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, "Single scattering by red blood cells," Appl. Opt. 37, 7410-7418 (1998).
[CrossRef]

Sheperd, A. P.

Sirko, I. V.

A. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, "Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique," J. Biomed. Opt. 4, 76-84 (1999).
[CrossRef]

Snabre, P.

Steinke, J. M.

Sterry, W.

J. Lademann, H. Richter, W. Sterry, and A. V. Priezzhev, "Diagnostic potential of erythrocytes aggregation and sedimentation measurements in whole blood," in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 4263, 106-111 (2003).
[CrossRef]

Swartling, J.

Tarassenko, L.

Thamm, E.

Twersky, V.

van der Meer, F. J.

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, D. M. de Bruin, and T. G. van Leeuwen, "Hematocrit-dependence of the scattering coefficient of blood determined by optical coherence tomography," in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc. SPIE 5861, 58610W (2005).
[CrossRef]

van Leeuwen, T. G.

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, D. M. de Bruin, and T. G. van Leeuwen, "Hematocrit-dependence of the scattering coefficient of blood determined by optical coherence tomography," in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc. SPIE 5861, 58610W (2005).
[CrossRef]

Yaroslavsky, A. N.

M. Hammer, A. N. Yaroslavsky, and D. Schweitzer, "A scattering phase function for blood with physiological haematocrit," Phys. Med. Biol. 46, N65-N69 (2001).
[CrossRef] [PubMed]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements," J. Biomed. Opt. 4, 47-53 (1999).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Different phase function approximations to determine optical properties of blood: a comparison," in Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology, A. V. Priezzhev, T. Asakura, and R. C. Leif, eds., Proc. SPIE 2982, 324-330 (1997).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996).
[CrossRef]

Yaroslavsky, I. V.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements," J. Biomed. Opt. 4, 47-53 (1999).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Different phase function approximations to determine optical properties of blood: a comparison," in Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology, A. V. Priezzhev, T. Asakura, and R. C. Leif, eds., Proc. SPIE 2982, 324-330 (1997).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996).
[CrossRef]

Ann. Biomed. Eng.

R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 119-137 (1986).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Spectrosc.

J. Biomed. Opt.

A. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, "Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique," J. Biomed. Opt. 4, 76-84 (1999).
[CrossRef]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef]

M. Friebel and M. Meinke, "Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements," J. Biomed. Opt. 10, 064019 (2005).
[CrossRef]

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, "Optical properties of platelets and blood plasma and their influence on the optical behaviour of whole blood in the visible to near infrared wavelength range," J. Biomed. Opt. 12, 014024 (2007).
[CrossRef] [PubMed]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements," J. Biomed. Opt. 4, 47-53 (1999).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

L. G. Lindberg and P. A. Oberg, "Optical properties of blood in motion," Opt. Eng. 32, 253-257 (1993).
[CrossRef]

Phys. Med. Biol.

M. Hammer, A. N. Yaroslavsky, and D. Schweitzer, "A scattering phase function for blood with physiological haematocrit," Phys. Med. Biol. 46, N65-N69 (2001).
[CrossRef] [PubMed]

Proc. SPIE

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996).
[CrossRef]

A. Priezzhev, S. G. Khatsevich, and V. Lopatin, "Asymmetry of light backscattering from Couette flow of RBC suspensions: application for biomonitoring of blood samples," in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H. Foth, N. Krasner, R. Marchesini, and H. Podbielska, eds., Proc. SPIE 3567, 213-222 (1999).
[CrossRef]

J. Lademann, H. Richter, W. Sterry, and A. V. Priezzhev, "Diagnostic potential of erythrocytes aggregation and sedimentation measurements in whole blood," in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 4263, 106-111 (2003).
[CrossRef]

R. Bayer, S. Çaglayan, and B. Günther, "Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction," in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE 2136, 105-113 (1994).
[CrossRef]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, D. M. de Bruin, and T. G. van Leeuwen, "Hematocrit-dependence of the scattering coefficient of blood determined by optical coherence tomography," in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc. SPIE 5861, 58610W (2005).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Different phase function approximations to determine optical properties of blood: a comparison," in Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology, A. V. Priezzhev, T. Asakura, and R. C. Leif, eds., Proc. SPIE 2982, 324-330 (1997).
[CrossRef]

A. Roggan, O. Minet, C. Schröder, and G. Müller, "Measurements of optical tissue properties using integrating sphere technique," in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., Proc. SPIE IS11, 149-165 (1993).

Other

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 1, pp. 65-66.

M. Friebel, A. Roggan, G. Müller, and M. Meinke, "Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions," J. Biomed. Opt. 11, 031021 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Mean values of μ a , μ s , g, and μ s of ten blood samples of the RBCs in saline solution with a Hct of 8.6% from ten different donors including the standard deviations in the wavelength range of 250– 1100   nm .

Fig. 2
Fig. 2

Most appropriate α values for eight different blood concentrations between a Hct of 0.84% and 42.1%.

Fig. 3
Fig. 3

(Color online) Biologically normalized values of μ a , μ s , g, and μ s of RBCs in saline solution of eight different blood concentrations between a Hct of 0.84% and 42.1% in the wavelength range of 250– 1100   nm . Only the curves of a Hct of 0.84% and 42.1% are specially marked because all the curves change continuously with the Hct.

Fig. 4
Fig. 4

(Color online) Relative intrinsic parameters μ a _ rel , μ s _ rel , g _ rel , and μ s _ rel of eight different concentrations of RBCs in saline solution between a Hct of 0.84% and 42.1% related to a Hct of 8.6% in the wavelength range of 250– 1100   nm . Only the curves of a Hct of 0.84% and 42.1% are specially marked because all the curves change continuously with the Hct.

Fig. 5
Fig. 5

Averaged relative intrinsic parameter μ a _ rel dependent on the Hct for the wavelength ranges of 250– 600   nm and 600– 1100   nm with approximation lines.

Fig. 6
Fig. 6

Averaged relative intrinsic parameter μ s _ rel dependent on the Hct for the wavelength range of 600– 1100   nm with approximation curves and for the wavelengths of 250 and 415 nm and μ s _ rel calculated using Eq. (1).

Fig. 7
Fig. 7

Averaged relative intrinsic parameter g_rel dependent on the Hct for the wavelength range of 600– 1100   nm with approximation curves and for the wavelengths of 250 and 415   nm .

Fig. 8
Fig. 8

Averaged relative intrinsic parameter μ s _ rel dependent on the Hct for the wavelength range of 600– 1100   nm with approximation curves and for the wavelengths of 250 and 415   nm .

Fig. 9
Fig. 9

Biologically normalized values of μ a , μ s , g, and μ s dependent on the wavelength of RBCs suspended in 0.9% saline solution and suspended in blood plasma (Hct of 41.2%). In addition, the optical parameters are depicted for spheres of the same volume together with the refractive index in plasma, theoretically determined by Mie theory from the parameters of the RBCs in saline solution.

Tables (1)

Tables Icon

Table 1 Data of Standard Optical Parameters μ a St, μ s St, g St, and μ s St′ of the RBCs in Saline Solution with a Hct of 8.6% Dependent on Wavelength a

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = 1 + c 1 λ 2 λ 2 λ 1 2 ,
μ s = Hct ( 1 Hct ) MCV σ s ,
μ a ( λ , Hct ) = 0.1233 μ a St ( λ ) Hct
for 250 nm < λ < 400 nm, 430 nm < λ < 600 nm ,
0.84% < Hct < 42.1% .
μ a ( λ , Hct ) = 0.1206 μ a St ( λ ) Hct
for 600 nm < λ < 1100 nm, 0.84% < Hct < 42.1% .
μ s ( λ , Hct ) = ( 0.0015 Hct 2 + 0.1268 Hct ) μ s St ( λ ) for 25 0 nm < λ < 1100 nm, 0.84%
  < Hct < 17.1% for 600 nm < λ
    < 1100 nm, 17.1 < Hct < 42.1 % .
g ( λ , Hct ) = ( 2.684 × 10 6 Hct 2 2.373 × 10 4 Hct + 1.003 ) g St ( λ ) for 600 nm < λ
  < 1100 nm, 0.84% < Hct < 42.1% .
μ s ( λ , Hct ) = 0.1167 × μ s St ( λ ) Hct for 250 nm < λ
< 1100 nm, 0.84% < Hct < 17. 1% .
for 600 nm < λ < 1100 nm, 17.1 < Hct < 42.1% .

Metrics