Abstract

We report measurements of chemical concentrations in clinical blood serum and urine samples using liquid-core optical fiber (LCOF) Raman spectroscopy to increase the collected signal strength. Both Raman and absorption spectra were acquired in the near-infrared region using the LCOF geometry. Spectra of 71 blood serum and 61 urine samples were regressed via partial least squares against reference analyzer values. Significant correlation was found between predicted and reference concentrations for 13 chemicals. Using absorption data to normalize the LCOF enhancement made the results more accurate. The experimental geometry is well suited for high-volume and automated chemical analysis of clear biofluids.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. K. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, "Blood analysis by Raman spectroscopy," Opt. Lett. 27, 2004-2007 (2002).
    [CrossRef]
  2. W. R. Premasiri, R. H. Clarks, and M. E. Womble, "Urine analysis by laser Raman spectroscopy," Lasers Surg. Med. 28, 330-334 (2001).
    [CrossRef] [PubMed]
  3. K. J. Ward, D. M. Haaland, M. R. Robinson, and R. P. Eaton, "Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy," Appl. Spectrosc. 46, 959-965 (1992).
    [CrossRef]
  4. H. M. Heise, R. Marbach, T. Koshinsky, and F. A. Gries, "Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis," Appl. Spectrosc. 48, 85-95 (1994).
    [CrossRef]
  5. G. Budinova, J. Salva, and K. Volka, "Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum," Appl. Spectrosc. 51, 631-635 (1997).
    [CrossRef]
  6. C. Petibois, V. Rigalleau, A.-M. Mellin, A. Perromat, G. Cazorla, H. Gin, and G. Deleris, "Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy," Clin. Chem. 45, 1530-1535 (1999).
    [PubMed]
  7. D. Rohleder, G. Kocherscheidt, W. K. K. Gerber, J. Möcks, and W. Petrich, "Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum," J. Biomed. Opt. 10, 031108 (2005).
    [CrossRef] [PubMed]
  8. R. A. Shaw, S. Low-Ying, M. Leroux, and H. H. Mantsch, "Toward reagent-free clinical analysis: quantitation of urine urea, creatinine, and total protein from the mid-infrared spectra of dried urine films," Clin. Chem. 46, 1493-1495 (2000).
    [PubMed]
  9. H. M. Heise, G. Voigt, P. Lampen, L. Kupper, S. Rudloff, and G. Werner, "Multivariate calibration for the determination of analytes in urine using mid-infrared attenuated total reflection spectroscopy," Appl. Spectrosc. 55, 434-443 (2001).
    [CrossRef]
  10. F. M. Ham, G. M. Cohen, I. Kostanic, and B. R. Gooch, "Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum," Physiol. Meas. 17, 1-20 (1996).
    [CrossRef] [PubMed]
  11. R. E. Shaffer, G. W. Small, and M. A. Arnold, "Genetic algorithm-based protocol for coupling digital filtering and partial least-squares regression: application to the near-infrared analysis of glucose in biological matrices," Anal. Chem. 68, 2663-2675 (1996).
    [CrossRef] [PubMed]
  12. N. Kang, S. Kasemsumran, Y.-A. Woo, H.-J. Kim, and Y. Ozaki, "Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy," Chemom. Intell. Lab. Syst. 82, 90-96 (2006).
    [CrossRef]
  13. S. Kasemsumran, Y. P. Du, K. Maruo, and Y. Ozaki, "Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares," Chemom. Intell. Lab. Syst. 82, 97-103 (2006).
    [CrossRef]
  14. R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, "Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy," Clin. Biochem. 29, 11-19 (1996).
    [CrossRef] [PubMed]
  15. A. J. Berger, T.-W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, "Multicomponent blood analysis by near-infrared Raman spectroscopy," Appl. Opt. 38, 2916-2926 (1999).
    [CrossRef]
  16. J. Y. Qu, B. C. Wilson, and D. Suria, "Concentration measurement of multiple analytes in human sera by near-infrared laser Raman spectroscopy," Appl. Opt. 38, 5491-5498 (1999).
    [CrossRef]
  17. J. Y. Qu and L. Shao, "Near-infrared Raman instrument for rapid and quantitative measurements of clinically important analytes," Rev. Sci. Instrum. 72, 2717-2723 (2001).
    [CrossRef]
  18. D. Rohleder, W. Kiefer, and W. Petrich, "Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy," Analyst 10, 906-911 (2004).
    [CrossRef]
  19. J. W. McMurdy III and A. J. Berger, "Raman spectroscopy-based creatinine measurement in urine samples from a multipatient population," Appl. Spectrosc. 57, 522-525 (2003).
    [CrossRef] [PubMed]
  20. D. Qi and A. J. Berger, "Quantitative concentration measurements of creatinine dissovled in water and urine using Raman spectroscopy and a liquid core optical fiber," J. Biomed. Opt. 10, 031115 (2005).
    [CrossRef] [PubMed]
  21. L. Song, S. Liu, V. Zhelyaskov, and M. A. El-Sayed, "Application of liquid waveguide to Raman spectroscopy in aqueous solution," Appl. Spectrosc. 52, 1364-1367 (1998).
  22. R. Altkorn, I. Koev, and M. J. Pelletier, "Raman performance characteristics of Teflon-AF 2400 liquid-core optical-fiber sample cells," Appl. Spectrosc. 53, 1169-1176 (1999).
    [CrossRef]
  23. M. J. Pelletier and R. Altkorn, "Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell," Anal. Chem. 73, 1393-1397 (2001).
    [CrossRef] [PubMed]
  24. D. Qi and A. J. Berger, "Quantitative analysis of Raman signal enhancement from aqueous samples in liquid core optical fibers," Appl. Spectrosc. 58, 1165-1171 (2004).
    [CrossRef] [PubMed]
  25. R. Altkorn, M. D. Malinsky, R. P. Van Duyne, and I. Koev, "Intensity considerations in liquid core optical fiber Raman spectroscopy," Appl. Spectrosc. 55, 373-381 (2001).
    [CrossRef]
  26. D. Qi and A. J. Berger, "Correction method for absorption-dependent signal enhancement by a liquid core optical fiber," Appl. Opt. 45, 489-494 (2006).
    [CrossRef] [PubMed]
  27. A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem. 36, 1627-1639 (1964).
    [CrossRef]
  28. C. A. Lieber and A. Mahadevan-Jansen, "Automated method for subtraction of fluorescence from biological Raman spectra," Appl. Spectrosc. 57, 1363-1367 (2003).
    [CrossRef] [PubMed]
  29. R. Altkorn, I. Koev, R. P. V. Duyne, and M. Litorja, "Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy," Appl. Opt. 36, 8992-8998 (1997).
    [CrossRef]
  30. H. Mark, "Use of Mahalanobis distances to evaluate sample preparation for near-infrared reflectance analysis," Anal. Chem. 59, 790-795 (1987).
    [CrossRef]
  31. D. M. Haaland and E. V. Thomas, "Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of quantitative information," Anal. Chem. 60, 1193-1202 (1988).
    [CrossRef]
  32. D. M. Haaland and E. V. Thomas, "Partial least-squares methods for spectral analysis. 2. Application to simulated and glass spectra data," Anal. Chem. 60, 1202-1208 (1988).
    [CrossRef]
  33. W. L. Clarke, D. Cox, L. A. Conder-Frederick, W. Carter, and S. L. Pohl, "Evaluating clinical accuracy of systems for self-monitoring of blood glucose," Diabetes Care 10, 622-628 (1987).
    [CrossRef] [PubMed]
  34. C. A. Burtis, E. R. Ashwood, and D. E. Bruns, eds., Tietz Textbook of Clinical Chemistry and Molecular Diagnosis, 4th ed. (Elsevier, 2006).
  35. J. McMorran, D. C. Crowther, S. McMorran, C. Prince, S. YoungMin, J. Pleat, and I. Wacogne, "General Practice Notebook" (Oxbridge Solution Ltd., UK, 2007), http://www.gpnotebook.co.uk.

2006 (3)

N. Kang, S. Kasemsumran, Y.-A. Woo, H.-J. Kim, and Y. Ozaki, "Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy," Chemom. Intell. Lab. Syst. 82, 90-96 (2006).
[CrossRef]

S. Kasemsumran, Y. P. Du, K. Maruo, and Y. Ozaki, "Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares," Chemom. Intell. Lab. Syst. 82, 97-103 (2006).
[CrossRef]

D. Qi and A. J. Berger, "Correction method for absorption-dependent signal enhancement by a liquid core optical fiber," Appl. Opt. 45, 489-494 (2006).
[CrossRef] [PubMed]

2005 (2)

D. Qi and A. J. Berger, "Quantitative concentration measurements of creatinine dissovled in water and urine using Raman spectroscopy and a liquid core optical fiber," J. Biomed. Opt. 10, 031115 (2005).
[CrossRef] [PubMed]

D. Rohleder, G. Kocherscheidt, W. K. K. Gerber, J. Möcks, and W. Petrich, "Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum," J. Biomed. Opt. 10, 031108 (2005).
[CrossRef] [PubMed]

2004 (2)

D. Rohleder, W. Kiefer, and W. Petrich, "Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy," Analyst 10, 906-911 (2004).
[CrossRef]

D. Qi and A. J. Berger, "Quantitative analysis of Raman signal enhancement from aqueous samples in liquid core optical fibers," Appl. Spectrosc. 58, 1165-1171 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (1)

2001 (5)

W. R. Premasiri, R. H. Clarks, and M. E. Womble, "Urine analysis by laser Raman spectroscopy," Lasers Surg. Med. 28, 330-334 (2001).
[CrossRef] [PubMed]

H. M. Heise, G. Voigt, P. Lampen, L. Kupper, S. Rudloff, and G. Werner, "Multivariate calibration for the determination of analytes in urine using mid-infrared attenuated total reflection spectroscopy," Appl. Spectrosc. 55, 434-443 (2001).
[CrossRef]

J. Y. Qu and L. Shao, "Near-infrared Raman instrument for rapid and quantitative measurements of clinically important analytes," Rev. Sci. Instrum. 72, 2717-2723 (2001).
[CrossRef]

R. Altkorn, M. D. Malinsky, R. P. Van Duyne, and I. Koev, "Intensity considerations in liquid core optical fiber Raman spectroscopy," Appl. Spectrosc. 55, 373-381 (2001).
[CrossRef]

M. J. Pelletier and R. Altkorn, "Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell," Anal. Chem. 73, 1393-1397 (2001).
[CrossRef] [PubMed]

2000 (1)

R. A. Shaw, S. Low-Ying, M. Leroux, and H. H. Mantsch, "Toward reagent-free clinical analysis: quantitation of urine urea, creatinine, and total protein from the mid-infrared spectra of dried urine films," Clin. Chem. 46, 1493-1495 (2000).
[PubMed]

1999 (4)

1998 (1)

1997 (2)

1996 (3)

F. M. Ham, G. M. Cohen, I. Kostanic, and B. R. Gooch, "Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum," Physiol. Meas. 17, 1-20 (1996).
[CrossRef] [PubMed]

R. E. Shaffer, G. W. Small, and M. A. Arnold, "Genetic algorithm-based protocol for coupling digital filtering and partial least-squares regression: application to the near-infrared analysis of glucose in biological matrices," Anal. Chem. 68, 2663-2675 (1996).
[CrossRef] [PubMed]

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, "Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy," Clin. Biochem. 29, 11-19 (1996).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

1988 (2)

D. M. Haaland and E. V. Thomas, "Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of quantitative information," Anal. Chem. 60, 1193-1202 (1988).
[CrossRef]

D. M. Haaland and E. V. Thomas, "Partial least-squares methods for spectral analysis. 2. Application to simulated and glass spectra data," Anal. Chem. 60, 1202-1208 (1988).
[CrossRef]

1987 (2)

W. L. Clarke, D. Cox, L. A. Conder-Frederick, W. Carter, and S. L. Pohl, "Evaluating clinical accuracy of systems for self-monitoring of blood glucose," Diabetes Care 10, 622-628 (1987).
[CrossRef] [PubMed]

H. Mark, "Use of Mahalanobis distances to evaluate sample preparation for near-infrared reflectance analysis," Anal. Chem. 59, 790-795 (1987).
[CrossRef]

1964 (1)

A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Altkorn, R.

Arnold, M. A.

R. E. Shaffer, G. W. Small, and M. A. Arnold, "Genetic algorithm-based protocol for coupling digital filtering and partial least-squares regression: application to the near-infrared analysis of glucose in biological matrices," Anal. Chem. 68, 2663-2675 (1996).
[CrossRef] [PubMed]

Ashwood, E. R.

C. A. Burtis, E. R. Ashwood, and D. E. Bruns, eds., Tietz Textbook of Clinical Chemistry and Molecular Diagnosis, 4th ed. (Elsevier, 2006).

Berger, A. J.

Bruns, D. E.

C. A. Burtis, E. R. Ashwood, and D. E. Bruns, eds., Tietz Textbook of Clinical Chemistry and Molecular Diagnosis, 4th ed. (Elsevier, 2006).

Budinova, G.

Burtis, C. A.

C. A. Burtis, E. R. Ashwood, and D. E. Bruns, eds., Tietz Textbook of Clinical Chemistry and Molecular Diagnosis, 4th ed. (Elsevier, 2006).

Carter, W.

W. L. Clarke, D. Cox, L. A. Conder-Frederick, W. Carter, and S. L. Pohl, "Evaluating clinical accuracy of systems for self-monitoring of blood glucose," Diabetes Care 10, 622-628 (1987).
[CrossRef] [PubMed]

Cazorla, G.

C. Petibois, V. Rigalleau, A.-M. Mellin, A. Perromat, G. Cazorla, H. Gin, and G. Deleris, "Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy," Clin. Chem. 45, 1530-1535 (1999).
[PubMed]

Clarke, W. L.

W. L. Clarke, D. Cox, L. A. Conder-Frederick, W. Carter, and S. L. Pohl, "Evaluating clinical accuracy of systems for self-monitoring of blood glucose," Diabetes Care 10, 622-628 (1987).
[CrossRef] [PubMed]

Clarks, R. H.

W. R. Premasiri, R. H. Clarks, and M. E. Womble, "Urine analysis by laser Raman spectroscopy," Lasers Surg. Med. 28, 330-334 (2001).
[CrossRef] [PubMed]

Cohen, G. M.

F. M. Ham, G. M. Cohen, I. Kostanic, and B. R. Gooch, "Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum," Physiol. Meas. 17, 1-20 (1996).
[CrossRef] [PubMed]

Conder-Frederick, L. A.

W. L. Clarke, D. Cox, L. A. Conder-Frederick, W. Carter, and S. L. Pohl, "Evaluating clinical accuracy of systems for self-monitoring of blood glucose," Diabetes Care 10, 622-628 (1987).
[CrossRef] [PubMed]

Cox, D.

W. L. Clarke, D. Cox, L. A. Conder-Frederick, W. Carter, and S. L. Pohl, "Evaluating clinical accuracy of systems for self-monitoring of blood glucose," Diabetes Care 10, 622-628 (1987).
[CrossRef] [PubMed]

Crowther, D. C.

J. McMorran, D. C. Crowther, S. McMorran, C. Prince, S. YoungMin, J. Pleat, and I. Wacogne, "General Practice Notebook" (Oxbridge Solution Ltd., UK, 2007), http://www.gpnotebook.co.uk.

Deleris, G.

C. Petibois, V. Rigalleau, A.-M. Mellin, A. Perromat, G. Cazorla, H. Gin, and G. Deleris, "Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy," Clin. Chem. 45, 1530-1535 (1999).
[PubMed]

Du, Y. P.

S. Kasemsumran, Y. P. Du, K. Maruo, and Y. Ozaki, "Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares," Chemom. Intell. Lab. Syst. 82, 97-103 (2006).
[CrossRef]

Duyne, R. P. V.

Eaton, R. P.

El-Sayed, M. A.

Enejder, A. M. K.

Feld, M. S.

Gerber, W. K. K.

D. Rohleder, G. Kocherscheidt, W. K. K. Gerber, J. Möcks, and W. Petrich, "Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum," J. Biomed. Opt. 10, 031108 (2005).
[CrossRef] [PubMed]

Gin, H.

C. Petibois, V. Rigalleau, A.-M. Mellin, A. Perromat, G. Cazorla, H. Gin, and G. Deleris, "Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy," Clin. Chem. 45, 1530-1535 (1999).
[PubMed]

Golay, M. J. E.

A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Gooch, B. R.

F. M. Ham, G. M. Cohen, I. Kostanic, and B. R. Gooch, "Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum," Physiol. Meas. 17, 1-20 (1996).
[CrossRef] [PubMed]

Gries, F. A.

Haaland, D. M.

K. J. Ward, D. M. Haaland, M. R. Robinson, and R. P. Eaton, "Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy," Appl. Spectrosc. 46, 959-965 (1992).
[CrossRef]

D. M. Haaland and E. V. Thomas, "Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of quantitative information," Anal. Chem. 60, 1193-1202 (1988).
[CrossRef]

D. M. Haaland and E. V. Thomas, "Partial least-squares methods for spectral analysis. 2. Application to simulated and glass spectra data," Anal. Chem. 60, 1202-1208 (1988).
[CrossRef]

Ham, F. M.

F. M. Ham, G. M. Cohen, I. Kostanic, and B. R. Gooch, "Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum," Physiol. Meas. 17, 1-20 (1996).
[CrossRef] [PubMed]

Heise, H. M.

Horowitz, G.

Horowitz, G. L.

Hunter, M.

Itzkan, I.

Kang, N.

N. Kang, S. Kasemsumran, Y.-A. Woo, H.-J. Kim, and Y. Ozaki, "Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy," Chemom. Intell. Lab. Syst. 82, 90-96 (2006).
[CrossRef]

Kasemsumran, S.

N. Kang, S. Kasemsumran, Y.-A. Woo, H.-J. Kim, and Y. Ozaki, "Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy," Chemom. Intell. Lab. Syst. 82, 90-96 (2006).
[CrossRef]

S. Kasemsumran, Y. P. Du, K. Maruo, and Y. Ozaki, "Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares," Chemom. Intell. Lab. Syst. 82, 97-103 (2006).
[CrossRef]

Kiefer, W.

D. Rohleder, W. Kiefer, and W. Petrich, "Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy," Analyst 10, 906-911 (2004).
[CrossRef]

Kim, H.-J.

N. Kang, S. Kasemsumran, Y.-A. Woo, H.-J. Kim, and Y. Ozaki, "Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy," Chemom. Intell. Lab. Syst. 82, 90-96 (2006).
[CrossRef]

Kocherscheidt, G.

D. Rohleder, G. Kocherscheidt, W. K. K. Gerber, J. Möcks, and W. Petrich, "Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum," J. Biomed. Opt. 10, 031108 (2005).
[CrossRef] [PubMed]

Koev, I.

Koo, T.-W.

Koshinsky, T.

Kostanic, I.

F. M. Ham, G. M. Cohen, I. Kostanic, and B. R. Gooch, "Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum," Physiol. Meas. 17, 1-20 (1996).
[CrossRef] [PubMed]

Kotowich, S.

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, "Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy," Clin. Biochem. 29, 11-19 (1996).
[CrossRef] [PubMed]

Kupper, L.

Lampen, P.

Leroux, M.

R. A. Shaw, S. Low-Ying, M. Leroux, and H. H. Mantsch, "Toward reagent-free clinical analysis: quantitation of urine urea, creatinine, and total protein from the mid-infrared spectra of dried urine films," Clin. Chem. 46, 1493-1495 (2000).
[PubMed]

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, "Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy," Clin. Biochem. 29, 11-19 (1996).
[CrossRef] [PubMed]

Lieber, C. A.

Litorja, M.

Liu, S.

Low-Ying, S.

R. A. Shaw, S. Low-Ying, M. Leroux, and H. H. Mantsch, "Toward reagent-free clinical analysis: quantitation of urine urea, creatinine, and total protein from the mid-infrared spectra of dried urine films," Clin. Chem. 46, 1493-1495 (2000).
[PubMed]

Mahadevan-Jansen, A.

Malinsky, M. D.

Mantsch, H. H.

R. A. Shaw, S. Low-Ying, M. Leroux, and H. H. Mantsch, "Toward reagent-free clinical analysis: quantitation of urine urea, creatinine, and total protein from the mid-infrared spectra of dried urine films," Clin. Chem. 46, 1493-1495 (2000).
[PubMed]

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, "Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy," Clin. Biochem. 29, 11-19 (1996).
[CrossRef] [PubMed]

Marbach, R.

Mark, H.

H. Mark, "Use of Mahalanobis distances to evaluate sample preparation for near-infrared reflectance analysis," Anal. Chem. 59, 790-795 (1987).
[CrossRef]

Maruo, K.

S. Kasemsumran, Y. P. Du, K. Maruo, and Y. Ozaki, "Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares," Chemom. Intell. Lab. Syst. 82, 97-103 (2006).
[CrossRef]

McMorran, J.

J. McMorran, D. C. Crowther, S. McMorran, C. Prince, S. YoungMin, J. Pleat, and I. Wacogne, "General Practice Notebook" (Oxbridge Solution Ltd., UK, 2007), http://www.gpnotebook.co.uk.

McMorran, S.

J. McMorran, D. C. Crowther, S. McMorran, C. Prince, S. YoungMin, J. Pleat, and I. Wacogne, "General Practice Notebook" (Oxbridge Solution Ltd., UK, 2007), http://www.gpnotebook.co.uk.

McMurdy, J. W.

Mellin, A.-M.

C. Petibois, V. Rigalleau, A.-M. Mellin, A. Perromat, G. Cazorla, H. Gin, and G. Deleris, "Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy," Clin. Chem. 45, 1530-1535 (1999).
[PubMed]

Möcks, J.

D. Rohleder, G. Kocherscheidt, W. K. K. Gerber, J. Möcks, and W. Petrich, "Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum," J. Biomed. Opt. 10, 031108 (2005).
[CrossRef] [PubMed]

Oh, J.

Ozaki, Y.

S. Kasemsumran, Y. P. Du, K. Maruo, and Y. Ozaki, "Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares," Chemom. Intell. Lab. Syst. 82, 97-103 (2006).
[CrossRef]

N. Kang, S. Kasemsumran, Y.-A. Woo, H.-J. Kim, and Y. Ozaki, "Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy," Chemom. Intell. Lab. Syst. 82, 90-96 (2006).
[CrossRef]

Pelletier, M. J.

M. J. Pelletier and R. Altkorn, "Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell," Anal. Chem. 73, 1393-1397 (2001).
[CrossRef] [PubMed]

R. Altkorn, I. Koev, and M. J. Pelletier, "Raman performance characteristics of Teflon-AF 2400 liquid-core optical-fiber sample cells," Appl. Spectrosc. 53, 1169-1176 (1999).
[CrossRef]

Perromat, A.

C. Petibois, V. Rigalleau, A.-M. Mellin, A. Perromat, G. Cazorla, H. Gin, and G. Deleris, "Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy," Clin. Chem. 45, 1530-1535 (1999).
[PubMed]

Petibois, C.

C. Petibois, V. Rigalleau, A.-M. Mellin, A. Perromat, G. Cazorla, H. Gin, and G. Deleris, "Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy," Clin. Chem. 45, 1530-1535 (1999).
[PubMed]

Petrich, W.

D. Rohleder, G. Kocherscheidt, W. K. K. Gerber, J. Möcks, and W. Petrich, "Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum," J. Biomed. Opt. 10, 031108 (2005).
[CrossRef] [PubMed]

D. Rohleder, W. Kiefer, and W. Petrich, "Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy," Analyst 10, 906-911 (2004).
[CrossRef]

Pleat, J.

J. McMorran, D. C. Crowther, S. McMorran, C. Prince, S. YoungMin, J. Pleat, and I. Wacogne, "General Practice Notebook" (Oxbridge Solution Ltd., UK, 2007), http://www.gpnotebook.co.uk.

Pohl, S. L.

W. L. Clarke, D. Cox, L. A. Conder-Frederick, W. Carter, and S. L. Pohl, "Evaluating clinical accuracy of systems for self-monitoring of blood glucose," Diabetes Care 10, 622-628 (1987).
[CrossRef] [PubMed]

Premasiri, W. R.

W. R. Premasiri, R. H. Clarks, and M. E. Womble, "Urine analysis by laser Raman spectroscopy," Lasers Surg. Med. 28, 330-334 (2001).
[CrossRef] [PubMed]

Prince, C.

J. McMorran, D. C. Crowther, S. McMorran, C. Prince, S. YoungMin, J. Pleat, and I. Wacogne, "General Practice Notebook" (Oxbridge Solution Ltd., UK, 2007), http://www.gpnotebook.co.uk.

Qi, D.

Qu, J. Y.

J. Y. Qu and L. Shao, "Near-infrared Raman instrument for rapid and quantitative measurements of clinically important analytes," Rev. Sci. Instrum. 72, 2717-2723 (2001).
[CrossRef]

J. Y. Qu, B. C. Wilson, and D. Suria, "Concentration measurement of multiple analytes in human sera by near-infrared laser Raman spectroscopy," Appl. Opt. 38, 5491-5498 (1999).
[CrossRef]

Rigalleau, V.

C. Petibois, V. Rigalleau, A.-M. Mellin, A. Perromat, G. Cazorla, H. Gin, and G. Deleris, "Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy," Clin. Chem. 45, 1530-1535 (1999).
[PubMed]

Robinson, M. R.

Rohleder, D.

D. Rohleder, G. Kocherscheidt, W. K. K. Gerber, J. Möcks, and W. Petrich, "Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum," J. Biomed. Opt. 10, 031108 (2005).
[CrossRef] [PubMed]

D. Rohleder, W. Kiefer, and W. Petrich, "Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy," Analyst 10, 906-911 (2004).
[CrossRef]

Rudloff, S.

Salva, J.

Sasic, S.

Savitzky, A.

A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Shaffer, R. E.

R. E. Shaffer, G. W. Small, and M. A. Arnold, "Genetic algorithm-based protocol for coupling digital filtering and partial least-squares regression: application to the near-infrared analysis of glucose in biological matrices," Anal. Chem. 68, 2663-2675 (1996).
[CrossRef] [PubMed]

Shao, L.

J. Y. Qu and L. Shao, "Near-infrared Raman instrument for rapid and quantitative measurements of clinically important analytes," Rev. Sci. Instrum. 72, 2717-2723 (2001).
[CrossRef]

Shaw, R. A.

R. A. Shaw, S. Low-Ying, M. Leroux, and H. H. Mantsch, "Toward reagent-free clinical analysis: quantitation of urine urea, creatinine, and total protein from the mid-infrared spectra of dried urine films," Clin. Chem. 46, 1493-1495 (2000).
[PubMed]

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, "Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy," Clin. Biochem. 29, 11-19 (1996).
[CrossRef] [PubMed]

Small, G. W.

R. E. Shaffer, G. W. Small, and M. A. Arnold, "Genetic algorithm-based protocol for coupling digital filtering and partial least-squares regression: application to the near-infrared analysis of glucose in biological matrices," Anal. Chem. 68, 2663-2675 (1996).
[CrossRef] [PubMed]

Song, L.

Suria, D.

Thomas, E. V.

D. M. Haaland and E. V. Thomas, "Partial least-squares methods for spectral analysis. 2. Application to simulated and glass spectra data," Anal. Chem. 60, 1202-1208 (1988).
[CrossRef]

D. M. Haaland and E. V. Thomas, "Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of quantitative information," Anal. Chem. 60, 1193-1202 (1988).
[CrossRef]

Van Duyne, R. P.

Voigt, G.

Volka, K.

Wacogne, I.

J. McMorran, D. C. Crowther, S. McMorran, C. Prince, S. YoungMin, J. Pleat, and I. Wacogne, "General Practice Notebook" (Oxbridge Solution Ltd., UK, 2007), http://www.gpnotebook.co.uk.

Ward, K. J.

Werner, G.

Wilson, B. C.

Womble, M. E.

W. R. Premasiri, R. H. Clarks, and M. E. Womble, "Urine analysis by laser Raman spectroscopy," Lasers Surg. Med. 28, 330-334 (2001).
[CrossRef] [PubMed]

Woo, Y.-A.

N. Kang, S. Kasemsumran, Y.-A. Woo, H.-J. Kim, and Y. Ozaki, "Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy," Chemom. Intell. Lab. Syst. 82, 90-96 (2006).
[CrossRef]

YoungMin, S.

J. McMorran, D. C. Crowther, S. McMorran, C. Prince, S. YoungMin, J. Pleat, and I. Wacogne, "General Practice Notebook" (Oxbridge Solution Ltd., UK, 2007), http://www.gpnotebook.co.uk.

Zhelyaskov, V.

Anal. Chem. (6)

R. E. Shaffer, G. W. Small, and M. A. Arnold, "Genetic algorithm-based protocol for coupling digital filtering and partial least-squares regression: application to the near-infrared analysis of glucose in biological matrices," Anal. Chem. 68, 2663-2675 (1996).
[CrossRef] [PubMed]

M. J. Pelletier and R. Altkorn, "Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell," Anal. Chem. 73, 1393-1397 (2001).
[CrossRef] [PubMed]

A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

H. Mark, "Use of Mahalanobis distances to evaluate sample preparation for near-infrared reflectance analysis," Anal. Chem. 59, 790-795 (1987).
[CrossRef]

D. M. Haaland and E. V. Thomas, "Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of quantitative information," Anal. Chem. 60, 1193-1202 (1988).
[CrossRef]

D. M. Haaland and E. V. Thomas, "Partial least-squares methods for spectral analysis. 2. Application to simulated and glass spectra data," Anal. Chem. 60, 1202-1208 (1988).
[CrossRef]

Analyst (1)

D. Rohleder, W. Kiefer, and W. Petrich, "Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy," Analyst 10, 906-911 (2004).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (10)

C. A. Lieber and A. Mahadevan-Jansen, "Automated method for subtraction of fluorescence from biological Raman spectra," Appl. Spectrosc. 57, 1363-1367 (2003).
[CrossRef] [PubMed]

D. Qi and A. J. Berger, "Quantitative analysis of Raman signal enhancement from aqueous samples in liquid core optical fibers," Appl. Spectrosc. 58, 1165-1171 (2004).
[CrossRef] [PubMed]

R. Altkorn, M. D. Malinsky, R. P. Van Duyne, and I. Koev, "Intensity considerations in liquid core optical fiber Raman spectroscopy," Appl. Spectrosc. 55, 373-381 (2001).
[CrossRef]

L. Song, S. Liu, V. Zhelyaskov, and M. A. El-Sayed, "Application of liquid waveguide to Raman spectroscopy in aqueous solution," Appl. Spectrosc. 52, 1364-1367 (1998).

R. Altkorn, I. Koev, and M. J. Pelletier, "Raman performance characteristics of Teflon-AF 2400 liquid-core optical-fiber sample cells," Appl. Spectrosc. 53, 1169-1176 (1999).
[CrossRef]

J. W. McMurdy III and A. J. Berger, "Raman spectroscopy-based creatinine measurement in urine samples from a multipatient population," Appl. Spectrosc. 57, 522-525 (2003).
[CrossRef] [PubMed]

K. J. Ward, D. M. Haaland, M. R. Robinson, and R. P. Eaton, "Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy," Appl. Spectrosc. 46, 959-965 (1992).
[CrossRef]

H. M. Heise, R. Marbach, T. Koshinsky, and F. A. Gries, "Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis," Appl. Spectrosc. 48, 85-95 (1994).
[CrossRef]

G. Budinova, J. Salva, and K. Volka, "Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum," Appl. Spectrosc. 51, 631-635 (1997).
[CrossRef]

H. M. Heise, G. Voigt, P. Lampen, L. Kupper, S. Rudloff, and G. Werner, "Multivariate calibration for the determination of analytes in urine using mid-infrared attenuated total reflection spectroscopy," Appl. Spectrosc. 55, 434-443 (2001).
[CrossRef]

Chemom. Intell. Lab. Syst. (2)

N. Kang, S. Kasemsumran, Y.-A. Woo, H.-J. Kim, and Y. Ozaki, "Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy," Chemom. Intell. Lab. Syst. 82, 90-96 (2006).
[CrossRef]

S. Kasemsumran, Y. P. Du, K. Maruo, and Y. Ozaki, "Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares," Chemom. Intell. Lab. Syst. 82, 97-103 (2006).
[CrossRef]

Clin. Biochem. (1)

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, "Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy," Clin. Biochem. 29, 11-19 (1996).
[CrossRef] [PubMed]

Clin. Chem. (2)

C. Petibois, V. Rigalleau, A.-M. Mellin, A. Perromat, G. Cazorla, H. Gin, and G. Deleris, "Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy," Clin. Chem. 45, 1530-1535 (1999).
[PubMed]

R. A. Shaw, S. Low-Ying, M. Leroux, and H. H. Mantsch, "Toward reagent-free clinical analysis: quantitation of urine urea, creatinine, and total protein from the mid-infrared spectra of dried urine films," Clin. Chem. 46, 1493-1495 (2000).
[PubMed]

Diabetes Care (1)

W. L. Clarke, D. Cox, L. A. Conder-Frederick, W. Carter, and S. L. Pohl, "Evaluating clinical accuracy of systems for self-monitoring of blood glucose," Diabetes Care 10, 622-628 (1987).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

D. Rohleder, G. Kocherscheidt, W. K. K. Gerber, J. Möcks, and W. Petrich, "Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum," J. Biomed. Opt. 10, 031108 (2005).
[CrossRef] [PubMed]

D. Qi and A. J. Berger, "Quantitative concentration measurements of creatinine dissovled in water and urine using Raman spectroscopy and a liquid core optical fiber," J. Biomed. Opt. 10, 031115 (2005).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

W. R. Premasiri, R. H. Clarks, and M. E. Womble, "Urine analysis by laser Raman spectroscopy," Lasers Surg. Med. 28, 330-334 (2001).
[CrossRef] [PubMed]

Opt. Lett. (1)

Physiol. Meas. (1)

F. M. Ham, G. M. Cohen, I. Kostanic, and B. R. Gooch, "Multivariate determination of glucose concentrations from optimally filtered frequency-warped NIR spectra of human blood serum," Physiol. Meas. 17, 1-20 (1996).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

J. Y. Qu and L. Shao, "Near-infrared Raman instrument for rapid and quantitative measurements of clinically important analytes," Rev. Sci. Instrum. 72, 2717-2723 (2001).
[CrossRef]

Other (2)

C. A. Burtis, E. R. Ashwood, and D. E. Bruns, eds., Tietz Textbook of Clinical Chemistry and Molecular Diagnosis, 4th ed. (Elsevier, 2006).

J. McMorran, D. C. Crowther, S. McMorran, C. Prince, S. YoungMin, J. Pleat, and I. Wacogne, "General Practice Notebook" (Oxbridge Solution Ltd., UK, 2007), http://www.gpnotebook.co.uk.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

System setup. BPF, bandpass filter; DM, dichroic beam splitter; EF, edge filter; OF 1 , OF 2 , OF 3 , optical fibers; WL, white-light source; PM, powermeter; L, 830 nm laser; R, Raman-scattered photons; W, white light.

Fig. 2
Fig. 2

(Color online) Typical corrected Raman spectra of blood serum and urine samples. A, blood serum spectra. The integration time is 150 s. B, urine spectra. The integration time is 64 s. Fluorescence backgrounds have been removed by a polynomial fit.

Fig. 3
Fig. 3

(Color online) PLS cross-validation results for A, TB, RMSECV c = 0.09 mg∕dl; B, CO 2 , RMSECV c = 2.3 mEq∕l; C, triglyceride, RMSECV c = 11.5 mg∕dl; D, BUN, RMSECV c = 1.5 mg∕dl. The predictions were based upon corrected Raman spectra. Integration time, 150 s.

Fig. 4
Fig. 4

(Color online) PLS cross-validation results for the proteins using corrected spectra. Circles, TP, RMSECV c = 145 mg∕dl; triangles, albumin, RMSECV c = 83 mg∕dl; squares, globulin, RMSECV c = 110 mg∕dl. Integration time, 150 s.

Fig. 5
Fig. 5

(Color online) PLS cross-validation results for cholesterol using corrected spectra. Circles, total cholesterol, RMSECV c = 4.0 mg∕dl; triangles, LDL carried cholesterol, RMSECV c = 12.4 mg∕dl; squares, HDL carried cholesterol, RMSECV c = 11.2 mg∕dl. Integration time, 150 s.

Fig. 6
Fig. 6

(Color online) Blood serum glucose predictions shown on the Clarke Error Grid. Solid circles, direct Raman spectra, RMSECV = 15.4 mg∕dl. Fifty-seven of 68 samples land in zone A, with the remainder in zone B. Open circles, corrected Raman spectra. RMSECV = 8.8 mg∕dl. Now 64 samples land in zone A.

Fig. 7
Fig. 7

(Color online) Prediction results in urine samples. A, UUN concentration prediction result using corrected spectra. RMSECV c = 40.0 mg∕dl. B, creatinine concentration prediction result using corrected spectra. RMSECV c . = 4.3 mg∕dl. The integration time is 64 s. The sample number is 61.

Fig. 8
Fig. 8

(Color online) Prediction coefficient g versus the integration time. From top to bottom, as marked: squares, cholesterol; crosses, glucose; points, triglyceride; pentagons, TP; circles, CO2; triangles, HDL. The experiment data points and error bars were calculated based upon equal-integration-time spectra summed from different spectral frames. The dashed line indicates g = 2 line, a rough minimum for useful accuracy.

Fig. 9
Fig. 9

(Color online) RMSECV versus the sample size n. From top to bottom, as marked: solid points, triglyceride; crosses, glucose; squares, cholesterol. The experimental data points and error bars were calculated using multiple equal-sized subsets of spectra randomly selected from the total sample pool. The integration time is 150 s.

Tables (3)

Tables Icon

Table 1 Statistical Distribution of Analyte Concentration Values in the Blood and Urine Specimen Groups

Tables Icon

Table 2 Comparison of Prediction Errors Using Corrected Raman Spectra RMSECV c with Reference Analyzer Errors E ref and Prediction Errors Using Direct Raman Spectra RMSECV d

Tables Icon

Table 3 Characteristic Time t c at Which Shot Noise Causes About Half of the Total Prediction Error

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ( ν ˜ ) corrected = P ( ν ˜ ) direct / { 1 e [ μ a R ( ν ˜ ) + μ a L + 2 μ s ] L [ μ a R ( ν ˜ ) + μ a L + 2 μ s ] L } ,
g = STD R RMSECV .
RMSECV c 2 = α 2 t + β 2 .
t c = α 2 β 2 .

Metrics