A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).

[CrossRef]

K. Ren, B. Moa-Anderson, G. Bal, X. Gu, and A. H. Hielscher, "Frequency domain tomography in small animals with the equation of radiative transfer," in Optical Tomography and Spectroscopy of Tissue VI, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 5693, 111-120 (2005).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).

[CrossRef]
[PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).

[CrossRef]
[PubMed]

K. Vishwanath and M. Mycek, "Time-resolved photon migration in bi-layered tissue models," Opt. Express 13, 7466-7482 (2005).

[CrossRef]
[PubMed]

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).

[CrossRef]
[PubMed]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).

[CrossRef]
[PubMed]

Y. Phaneendra Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method," J. Biomed. Opt. 9, 1002-1012 (2004).

[CrossRef]
[PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).

[CrossRef]
[PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical tomography," Appl. Opt. 42, 3081-3094 (2003).

[CrossRef]
[PubMed]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three-dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-170 (2002).

[PubMed]

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence-mediated tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).

[CrossRef]
[PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).

[CrossRef]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001).

[CrossRef]

D. Contini, F. Martelli, and G. Zaccanti, "Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory," Appl. Opt. 36, 4587-4599 (1997).

[CrossRef]
[PubMed]

B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).

[CrossRef]

J. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).

[CrossRef]
[PubMed]

A. Kienle and M. S. Patterson, "Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from semi-infinite turbid medium," J. Opt. Soc. Am. A 14, 246-254 (1997).

[CrossRef]

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).

[CrossRef]
[PubMed]

E. M. Sevick-Muraca and C. L. Burch, "Origin of phosphorescence signals reemitted from tissues," Opt. Lett. 19, 1928-1930 (1994).

[CrossRef]
[PubMed]

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994).

[CrossRef]

M. S. Patterson and B. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).

[CrossRef]
[PubMed]

B. C. Wilson and G. Adam, "A Monte Carlo model for the absorption and flux distribution of light in tissue," Med. Phys. 10, 824-830 (1983).

[CrossRef]
[PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).

[CrossRef]
[PubMed]

B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).

[CrossRef]

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999).

[CrossRef]

K. Ren, B. Moa-Anderson, G. Bal, X. Gu, and A. H. Hielscher, "Frequency domain tomography in small animals with the equation of radiative transfer," in Optical Tomography and Spectroscopy of Tissue VI, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 5693, 111-120 (2005).

[CrossRef]

J. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).

[CrossRef]
[PubMed]

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meeting on CD-ROM (Optical Society of America, 2004), paper WD2.

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical tomography," Appl. Opt. 42, 3081-3094 (2003).

[CrossRef]
[PubMed]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three-dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-170 (2002).

[PubMed]

M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence-mediated tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).

[CrossRef]
[PubMed]

M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).

[CrossRef]
[PubMed]

M. S. Patterson, B. Chance, and B. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).

[CrossRef]
[PubMed]

J. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).

[CrossRef]
[PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).

[CrossRef]
[PubMed]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).

[CrossRef]
[PubMed]

B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).

[CrossRef]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three-dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-170 (2002).

[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001).

[CrossRef]

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meeting on CD-ROM (Optical Society of America, 2004), paper WD2.

J. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).

[CrossRef]
[PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).

[CrossRef]
[PubMed]

K. Ren, B. Moa-Anderson, G. Bal, X. Gu, and A. H. Hielscher, "Frequency domain tomography in small animals with the equation of radiative transfer," in Optical Tomography and Spectroscopy of Tissue VI, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 5693, 111-120 (2005).

[CrossRef]

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).

[CrossRef]
[PubMed]

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meeting on CD-ROM (Optical Society of America, 2004), paper WD2.

K. Ren, B. Moa-Anderson, G. Bal, X. Gu, and A. H. Hielscher, "Frequency domain tomography in small animals with the equation of radiative transfer," in Optical Tomography and Spectroscopy of Tissue VI, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 5693, 111-120 (2005).

[CrossRef]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).

[CrossRef]

E. Hillman, "Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications," Ph.D. dissertation (University of London, 2002).

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).

[CrossRef]
[PubMed]

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).

[CrossRef]
[PubMed]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).

[CrossRef]

Y. Phaneendra Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method," J. Biomed. Opt. 9, 1002-1012 (2004).

[CrossRef]
[PubMed]

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).

[CrossRef]
[PubMed]

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meeting on CD-ROM (Optical Society of America, 2004), paper WD2.

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).

[CrossRef]
[PubMed]

B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).

[CrossRef]

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).

[CrossRef]
[PubMed]

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meeting on CD-ROM (Optical Society of America, 2004), paper WD2.

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meeting on CD-ROM (Optical Society of America, 2004), paper WD2.

K. Ren, B. Moa-Anderson, G. Bal, X. Gu, and A. H. Hielscher, "Frequency domain tomography in small animals with the equation of radiative transfer," in Optical Tomography and Spectroscopy of Tissue VI, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 5693, 111-120 (2005).

[CrossRef]

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).

[CrossRef]
[PubMed]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).

[CrossRef]
[PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence-mediated tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).

[CrossRef]
[PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).

[CrossRef]

A. Kienle and M. S. Patterson, "Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from semi-infinite turbid medium," J. Opt. Soc. Am. A 14, 246-254 (1997).

[CrossRef]

M. S. Patterson and B. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).

[CrossRef]
[PubMed]

M. S. Patterson, B. Chance, and B. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).

[CrossRef]
[PubMed]

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).

[CrossRef]
[PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).

[CrossRef]
[PubMed]

K. Ren, B. Moa-Anderson, G. Bal, X. Gu, and A. H. Hielscher, "Frequency domain tomography in small animals with the equation of radiative transfer," in Optical Tomography and Spectroscopy of Tissue VI, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 5693, 111-120 (2005).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).

[CrossRef]
[PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).

[CrossRef]
[PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).

[CrossRef]
[PubMed]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).

[CrossRef]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001).

[CrossRef]

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994).

[CrossRef]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence-mediated tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).

[CrossRef]
[PubMed]

Y. Phaneendra Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method," J. Biomed. Opt. 9, 1002-1012 (2004).

[CrossRef]
[PubMed]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).

[CrossRef]
[PubMed]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).

[CrossRef]
[PubMed]

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).

[CrossRef]
[PubMed]

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).

[CrossRef]
[PubMed]

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meeting on CD-ROM (Optical Society of America, 2004), paper WD2.

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence-mediated tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).

[CrossRef]
[PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).

[CrossRef]

B. C. Wilson and G. Adam, "A Monte Carlo model for the absorption and flux distribution of light in tissue," Med. Phys. 10, 824-830 (1983).

[CrossRef]
[PubMed]

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).

[CrossRef]
[PubMed]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).

[CrossRef]
[PubMed]

H. Li, J. Tian, F. P. Zhu, W. X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004).

[CrossRef]
[PubMed]

R. A. Groenhuis, H. A. Ferwerda, and J. J. ten Bosch, "Scattering and absorption of turbid materials determined from reflection measurements. 1. Theory," Appl. Opt. 22, 2456-2462 (1983).

[CrossRef]
[PubMed]

A. Ishimaru, "Diffusion of light in turbid material," Appl. Opt. 28, 2210-2215 (1989).

[CrossRef]
[PubMed]

M. S. Patterson, B. Chance, and B. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).

[CrossRef]
[PubMed]

G. Zaccanti, "Monte Carlo study of light propagation in optically thick media: point source case," Appl. Opt. 30, 2031-2041 (1991).

[CrossRef]
[PubMed]

M. S. Patterson and B. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).

[CrossRef]
[PubMed]

D. Contini, F. Martelli, and G. Zaccanti, "Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory," Appl. Opt. 36, 4587-4599 (1997).

[CrossRef]
[PubMed]

H. B. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, and E. M. Sevick-Muraca, "Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements," Appl. Opt. 38, 2138-2150 (1999).

[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical tomography," Appl. Opt. 42, 3081-3094 (2003).

[CrossRef]
[PubMed]

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).

[CrossRef]
[PubMed]

J. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).

[CrossRef]
[PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).

[CrossRef]
[PubMed]

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999).

[CrossRef]

Y. Phaneendra Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method," J. Biomed. Opt. 9, 1002-1012 (2004).

[CrossRef]
[PubMed]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).

[CrossRef]

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994).

[CrossRef]

A. Kienle and M. S. Patterson, "Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from semi-infinite turbid medium," J. Opt. Soc. Am. A 14, 246-254 (1997).

[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).

[CrossRef]
[PubMed]

B. C. Wilson and G. Adam, "A Monte Carlo model for the absorption and flux distribution of light in tissue," Med. Phys. 10, 824-830 (1983).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence-mediated tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).

[CrossRef]
[PubMed]

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).

[CrossRef]
[PubMed]

M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).

[CrossRef]
[PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).

[CrossRef]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001).

[CrossRef]

E. M. Sevick-Muraca and C. L. Burch, "Origin of phosphorescence signals reemitted from tissues," Opt. Lett. 19, 1928-1930 (1994).

[CrossRef]
[PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).

[CrossRef]
[PubMed]

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).

[CrossRef]
[PubMed]

K. Ren, B. Moa-Anderson, G. Bal, X. Gu, and A. H. Hielscher, "Frequency domain tomography in small animals with the equation of radiative transfer," in Optical Tomography and Spectroscopy of Tissue VI, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 5693, 111-120 (2005).

[CrossRef]

B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997).

[CrossRef]

E. Hillman, "Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications," Ph.D. dissertation (University of London, 2002).

P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, "A quantitative time-domain optical imager for small animals in vivo fluorescence studies," in Biomedical Optics Topical Meeting on CD-ROM (Optical Society of America, 2004), paper WD2.