Abstract

We present a method to accurately localize small fluorescent objects within the tissue using fluorescent diffuse optical tomography (FDOT). The proposed method exploits the localized or sparse nature of the fluorophores in the tissue as a priori information to considerably improve the accuracy of the reconstruction of fluorophore distribution. This is accomplished by minimizing a cost function that includes the L1 norm of the fluorophore distribution vector. Experimental results for a milk-based phantom using a fiber-based cw FDOT system demonstrate the capability of this method in accurately localizing small fluorescent objects deep in the phantom.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, 1-43 (2005).
    [CrossRef]
  2. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse optical tomography of highly heterogeneous media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
    [CrossRef] [PubMed]
  3. A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).
  4. M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005).
    [CrossRef] [PubMed]
  5. K. Licha, "Contrast agents for optical imaging," Top. Curr. Chem. 222, 1-29 (2002).
    [CrossRef]
  6. J. V. Frangioni, "In vivo near-infrared fluorescence imaging," Curr. Opin. Chem. Biol. 7, 626-634 (2003).
    [CrossRef] [PubMed]
  7. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
    [CrossRef] [PubMed]
  8. R. J. Gillies, "In vivo molecular imaging," J. Cell. Biochem. 87, 231-238 (2002).
    [CrossRef]
  9. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
    [CrossRef] [PubMed]
  10. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
    [CrossRef]
  11. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
    [CrossRef] [PubMed]
  12. G. Zacharakis, J. Ripoll, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
    [CrossRef] [PubMed]
  13. A. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005).
    [CrossRef] [PubMed]
  14. J. H. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).
    [CrossRef] [PubMed]
  15. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
    [CrossRef] [PubMed]
  16. X. D. Li, M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt. 35, 3746-3758 (1996).
    [CrossRef] [PubMed]
  17. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
    [CrossRef]
  18. E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging and tomography for cancer diagnostics," in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2004), pp. 1482-1485.
  19. W. B. Pogue and T. Hasan, "Targeting in photodynamic therapy and photo-imaging," Opt. Photon. News 14, 36-43 (2003).
    [CrossRef]
  20. C. D' Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in turbid media," Phys. Med. Biol. 50, 2313-2327 (2005).
    [CrossRef]
  21. R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries," J. Biomed. Opt. 11, 044007 (2006).
    [CrossRef] [PubMed]
  22. E. L. Hull, M. G. Nichols, and T. H. Foster, "Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance," Appl. Opt. 37, 2755-2765 (1998).
    [CrossRef]
  23. M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities," J. Lumin. 60, 281-268 (1994).
    [CrossRef]
  24. M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, "Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis," Appl. Phys. Lett. 89, 133902 (2006).
    [CrossRef]
  25. A. Eidsath, V. Chernomordik, A. Gandjbakhche, P. Smith, and A. Russo, "Three-dimensional localization of fluorescent masses deeply embedded in tissue," Phys. Med. Biol. 47, 4079-4092 (2002).
    [CrossRef] [PubMed]
  26. Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, "Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies," Opt. Lett. 28, 2070-2072 (2003).
    [CrossRef] [PubMed]
  27. B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, "Precision localization of hidden absorbers in body tissues with phase-array optical systems," Rev. Sci. Instrum. 67, 4324-4332 (1996).
    [CrossRef]
  28. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998).
    [CrossRef]
  29. B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997).
    [CrossRef] [PubMed]
  30. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Phys. Med. Biol. 22, 1779-1792 (1995).
  31. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Phys. Med. Biol. 20, 299-309 (1993).
  32. S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006).
    [CrossRef]
  33. S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM (Soc. Ind. Appl. Math.) Rev. 43, 129-159 (2001).
    [CrossRef]
  34. J. Wu, Y. Wang, L. Perelman, I. Itzkan, I. Ramachandra, R. Dasari, and M. S. Feld, "Time-resolved multichannel imaging of fluorescent objects embedded in turbid media," Opt. Lett. 20, 489-491 (1995).
    [CrossRef] [PubMed]
  35. A. B. Milstein, "Imaging of near-infrared fluorescence, absorption, and scattering in turbid media," Ph.D. dissertation (Purdue University, West Lafayette, Ind., 2004).
  36. A. Soubret and V. Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006).
    [CrossRef] [PubMed]
  37. M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, "Effects of background fluorescence in fluorescence molecular tomography," Appl. Opt. 44, 5468-5474 (2005).
    [CrossRef] [PubMed]
  38. J. H. Chang, H. L. Graber, and R. L. Barbour, "Improved reconstruction algorithm for luminescence optical tomography when background lumiphore is present," Appl. Opt. 37, 3547-3552 (1998).
    [CrossRef]
  39. P. Mohajerani (Department of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Station, N.W., Atlanta, GA, 30332). A. A. Eftekhar, and A. Adibi are preparing a manuscript to be called "Localization of small fluorescent objects in tissue in the presence of diffuse background fluorescence."
  40. M. D. Waterworth, B. J. Joblin, T. van Doorn, and H. E. Niesler, "Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging," Aust. Phys. Eng. Sci. Med. 18, 39-44 (1995).
  41. J. Christensen, L. Norgaard, R. Bro, and S. B. Engelsen, "Multivariate autofluorescence of intact food systems," Chem. Rev. 106, 1979-1994 (2006).
    [CrossRef] [PubMed]
  42. L. S. Zhang, L. Zhang, C. P. Zhang, S. W. Qi, T. Xu, and J. G. Tian, "Measurements of absorption and anisotropy coefficients of the fat emulsion intralipid-10%," Chin. Phys. Lett. 21, 2517-2520 (2004).
    [CrossRef]

2006 (5)

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries," J. Biomed. Opt. 11, 044007 (2006).
[CrossRef] [PubMed]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, "Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis," Appl. Phys. Lett. 89, 133902 (2006).
[CrossRef]

S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006).
[CrossRef]

A. Soubret and V. Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006).
[CrossRef] [PubMed]

J. Christensen, L. Norgaard, R. Bro, and S. B. Engelsen, "Multivariate autofluorescence of intact food systems," Chem. Rev. 106, 1979-1994 (2006).
[CrossRef] [PubMed]

2005 (6)

C. D' Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in turbid media," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef]

G. Zacharakis, J. Ripoll, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, 1-43 (2005).
[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, "Effects of background fluorescence in fluorescence molecular tomography," Appl. Opt. 44, 5468-5474 (2005).
[CrossRef] [PubMed]

A. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005).
[CrossRef] [PubMed]

2004 (1)

L. S. Zhang, L. Zhang, C. P. Zhang, S. W. Qi, T. Xu, and J. G. Tian, "Measurements of absorption and anisotropy coefficients of the fat emulsion intralipid-10%," Chin. Phys. Lett. 21, 2517-2520 (2004).
[CrossRef]

2003 (5)

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, "Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies," Opt. Lett. 28, 2070-2072 (2003).
[CrossRef] [PubMed]

J. V. Frangioni, "In vivo near-infrared fluorescence imaging," Curr. Opin. Chem. Biol. 7, 626-634 (2003).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

W. B. Pogue and T. Hasan, "Targeting in photodynamic therapy and photo-imaging," Opt. Photon. News 14, 36-43 (2003).
[CrossRef]

2002 (7)

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

R. J. Gillies, "In vivo molecular imaging," J. Cell. Biochem. 87, 231-238 (2002).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

K. Licha, "Contrast agents for optical imaging," Top. Curr. Chem. 222, 1-29 (2002).
[CrossRef]

A. Eidsath, V. Chernomordik, A. Gandjbakhche, P. Smith, and A. Russo, "Three-dimensional localization of fluorescent masses deeply embedded in tissue," Phys. Med. Biol. 47, 4079-4092 (2002).
[CrossRef] [PubMed]

2001 (2)

S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM (Soc. Ind. Appl. Math.) Rev. 43, 129-159 (2001).
[CrossRef]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse optical tomography of highly heterogeneous media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

1998 (3)

1997 (2)

1996 (3)

1995 (3)

J. Wu, Y. Wang, L. Perelman, I. Itzkan, I. Ramachandra, R. Dasari, and M. S. Feld, "Time-resolved multichannel imaging of fluorescent objects embedded in turbid media," Opt. Lett. 20, 489-491 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Phys. Med. Biol. 22, 1779-1792 (1995).

M. D. Waterworth, B. J. Joblin, T. van Doorn, and H. E. Niesler, "Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging," Aust. Phys. Eng. Sci. Med. 18, 39-44 (1995).

1994 (1)

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities," J. Lumin. 60, 281-268 (1994).
[CrossRef]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Phys. Med. Biol. 20, 299-309 (1993).

Abdoulaev, G. S.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).

Achilefu, S.

Alfano, R. R.

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, "Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis," Appl. Phys. Lett. 89, 133902 (2006).
[CrossRef]

Alrubaiee, M.

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, "Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis," Appl. Phys. Lett. 89, 133902 (2006).
[CrossRef]

Arridge, S. R.

S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, 1-43 (2005).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Phys. Med. Biol. 22, 1779-1792 (1995).

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Phys. Med. Biol. 20, 299-309 (1993).

Barbour, R. L.

Beuthan, J.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).

Blessington, D.

Bluestone, A. Y.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).

Boas, D. A.

Bouman, C. A.

Bremer, C.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Bro, R.

J. Christensen, L. Norgaard, R. Bro, and S. B. Engelsen, "Multivariate autofluorescence of intact food systems," Chem. Rev. 106, 1979-1994 (2006).
[CrossRef] [PubMed]

Chance, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, "Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies," Opt. Lett. 28, 2070-2072 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse optical tomography of highly heterogeneous media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
[CrossRef] [PubMed]

B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, "Precision localization of hidden absorbers in body tissues with phase-array optical systems," Rev. Sci. Instrum. 67, 4324-4332 (1996).
[CrossRef]

X. D. Li, M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt. 35, 3746-3758 (1996).
[CrossRef] [PubMed]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities," J. Lumin. 60, 281-268 (1994).
[CrossRef]

Chang, J. H.

Chen, S. S.

S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM (Soc. Ind. Appl. Math.) Rev. 43, 129-159 (2001).
[CrossRef]

Chen, Y.

Chernomordik, V.

A. Eidsath, V. Chernomordik, A. Gandjbakhche, P. Smith, and A. Russo, "Three-dimensional localization of fluorescent masses deeply embedded in tissue," Phys. Med. Biol. 47, 4079-4092 (2002).
[CrossRef] [PubMed]

Christensen, J.

J. Christensen, L. Norgaard, R. Bro, and S. B. Engelsen, "Multivariate autofluorescence of intact food systems," Chem. Rev. 106, 1979-1994 (2006).
[CrossRef] [PubMed]

Comelli, D.

C. D' Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in turbid media," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef]

Cong, A.

Cubeddu, R.

C. D' Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in turbid media," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef]

D' Andrea, C.

C. D' Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in turbid media," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef]

Dasari, R.

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Phys. Med. Biol. 22, 1779-1792 (1995).

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Phys. Med. Biol. 20, 299-309 (1993).

Donoho, D. L.

S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM (Soc. Ind. Appl. Math.) Rev. 43, 129-159 (2001).
[CrossRef]

Eidsath, A.

A. Eidsath, V. Chernomordik, A. Gandjbakhche, P. Smith, and A. Russo, "Three-dimensional localization of fluorescent masses deeply embedded in tissue," Phys. Med. Biol. 47, 4079-4092 (2002).
[CrossRef] [PubMed]

Engelsen, S. B.

J. Christensen, L. Norgaard, R. Bro, and S. B. Engelsen, "Multivariate autofluorescence of intact food systems," Chem. Rev. 106, 1979-1994 (2006).
[CrossRef] [PubMed]

Eppstein, M. J.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Feld, M. S.

Foster, T. H.

Frangioni, J. V.

J. V. Frangioni, "In vivo near-infrared fluorescence imaging," Curr. Opin. Chem. Biol. 7, 626-634 (2003).
[CrossRef] [PubMed]

Gandjbakhche, A.

A. Eidsath, V. Chernomordik, A. Gandjbakhche, P. Smith, and A. Russo, "Three-dimensional localization of fluorescent masses deeply embedded in tissue," Phys. Med. Biol. 47, 4079-4092 (2002).
[CrossRef] [PubMed]

Gao, M.

Gayen, S. K.

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, "Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis," Appl. Phys. Lett. 89, 133902 (2006).
[CrossRef]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, 1-43 (2005).
[CrossRef]

Gillies, R. J.

R. J. Gillies, "In vivo molecular imaging," J. Cell. Biochem. 87, 231-238 (2002).
[CrossRef]

Godavarty, A.

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries," J. Biomed. Opt. 11, 044007 (2006).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Graber, H. L.

Graves, E. E.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Gurfinkel, M.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

Guven, M.

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

Hasan, T.

W. B. Pogue and T. Hasan, "Targeting in photodynamic therapy and photo-imaging," Opt. Photon. News 14, 36-43 (2003).
[CrossRef]

He, L.

B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, "Precision localization of hidden absorbers in body tissues with phase-array optical systems," Rev. Sci. Instrum. 67, 4324-4332 (1996).
[CrossRef]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, 1-43 (2005).
[CrossRef]

Hielscher, A. H.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse optical tomography of highly heterogeneous media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Phys. Med. Biol. 22, 1779-1792 (1995).

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Phys. Med. Biol. 20, 299-309 (1993).

Houston, J. P.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

Hull, E. L.

Intes, X.

Itzkan, I.

Jiang, H.

Joblin, B. J.

M. D. Waterworth, B. J. Joblin, T. van Doorn, and H. E. Niesler, "Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging," Aust. Phys. Eng. Sci. Med. 18, 39-44 (1995).

Kaipio, J. P.

S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006).
[CrossRef]

Kang, K.

B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, "Precision localization of hidden absorbers in body tissues with phase-array optical systems," Rev. Sci. Instrum. 67, 4324-4332 (1996).
[CrossRef]

Klose, A. D.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).

Kolehmainen, V.

S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006).
[CrossRef]

Lasker, J.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).

Lewis, G.

Li, H.

Li, X. D.

Licha, K.

K. Licha, "Contrast agents for optical imaging," Top. Curr. Chem. 222, 1-29 (2002).
[CrossRef]

Liu, H.

B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, "Precision localization of hidden absorbers in body tissues with phase-array optical systems," Rev. Sci. Instrum. 67, 4324-4332 (1996).
[CrossRef]

Liu, Q.

McBride, T.

Milane, R. P.

Milstein, A. B.

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

A. B. Milstein, "Imaging of near-infrared fluorescence, absorption, and scattering in turbid media," Ph.D. dissertation (Purdue University, West Lafayette, Ind., 2004).

Netz, U.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).

Nichols, M. G.

Niesler, H. E.

M. D. Waterworth, B. J. Joblin, T. van Doorn, and H. E. Niesler, "Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging," Aust. Phys. Eng. Sci. Med. 18, 39-44 (1995).

Norgaard, L.

J. Christensen, L. Norgaard, R. Bro, and S. B. Engelsen, "Multivariate autofluorescence of intact food systems," Chem. Rev. 106, 1979-1994 (2006).
[CrossRef] [PubMed]

Ntziachristos, V.

A. Soubret and V. Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006).
[CrossRef] [PubMed]

G. Zacharakis, J. Ripoll, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, "Effects of background fluorescence in fluorescence molecular tomography," Appl. Opt. 44, 5468-5474 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse optical tomography of highly heterogeneous media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

Oh, S.

O'Leary, M. A.

Osterberg, U.

Paulsen, K.

Perelman, L.

Pogue, B.

Pogue, W. B.

W. B. Pogue and T. Hasan, "Targeting in photodynamic therapy and photo-imaging," Opt. Photon. News 14, 36-43 (2003).
[CrossRef]

Qi, S. W.

L. S. Zhang, L. Zhang, C. P. Zhang, S. W. Qi, T. Xu, and J. G. Tian, "Measurements of absorption and anisotropy coefficients of the fat emulsion intralipid-10%," Chin. Phys. Lett. 21, 2517-2520 (2004).
[CrossRef]

Ramachandra, I.

Ripoll, J.

G. Zacharakis, J. Ripoll, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Roy, R.

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries," J. Biomed. Opt. 11, 044007 (2006).
[CrossRef] [PubMed]

Russo, A.

A. Eidsath, V. Chernomordik, A. Gandjbakhche, P. Smith, and A. Russo, "Three-dimensional localization of fluorescent masses deeply embedded in tissue," Phys. Med. Biol. 47, 4079-4092 (2002).
[CrossRef] [PubMed]

Saunders, M. A.

S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM (Soc. Ind. Appl. Math.) Rev. 43, 129-159 (2001).
[CrossRef]

Schweiger, M.

S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Phys. Med. Biol. 22, 1779-1792 (1995).

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Phys. Med. Biol. 20, 299-309 (1993).

Sevick-Muraca, E. M.

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries," J. Biomed. Opt. 11, 044007 (2006).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging and tomography for cancer diagnostics," in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2004), pp. 1482-1485.

Smith, P.

A. Eidsath, V. Chernomordik, A. Gandjbakhche, P. Smith, and A. Russo, "Three-dimensional localization of fluorescent masses deeply embedded in tissue," Phys. Med. Biol. 47, 4079-4092 (2002).
[CrossRef] [PubMed]

Somersalo, E.

S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006).
[CrossRef]

Soubret, A.

A. Soubret and V. Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, "Effects of background fluorescence in fluorescence molecular tomography," Appl. Opt. 44, 5468-5474 (2005).
[CrossRef] [PubMed]

Spinelli, L.

C. D' Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in turbid media," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef]

Stewart, M.

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).

Tarvainen, T.

S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006).
[CrossRef]

Testorf, M.

Theru, S.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Thompson, A. B.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Tian, J. G.

L. S. Zhang, L. Zhang, C. P. Zhang, S. W. Qi, T. Xu, and J. G. Tian, "Measurements of absorption and anisotropy coefficients of the fat emulsion intralipid-10%," Chin. Phys. Lett. 21, 2517-2520 (2004).
[CrossRef]

Turner, G. M.

Valentini, G.

C. D' Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in turbid media," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef]

van Doorn, T.

M. D. Waterworth, B. J. Joblin, T. van Doorn, and H. E. Niesler, "Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging," Aust. Phys. Eng. Sci. Med. 18, 39-44 (1995).

Vauhkonen, M.

S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006).
[CrossRef]

Wang, G.

Wang, Y.

Waterworth, M. D.

M. D. Waterworth, B. J. Joblin, T. van Doorn, and H. E. Niesler, "Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging," Aust. Phys. Eng. Sci. Med. 18, 39-44 (1995).

Webb, K. J.

Weissleder, R.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Wu, J.

Xu, M.

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, "Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis," Appl. Phys. Lett. 89, 133902 (2006).
[CrossRef]

Xu, T.

L. S. Zhang, L. Zhang, C. P. Zhang, S. W. Qi, T. Xu, and J. G. Tian, "Measurements of absorption and anisotropy coefficients of the fat emulsion intralipid-10%," Chin. Phys. Lett. 21, 2517-2520 (2004).
[CrossRef]

Yazici, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

Yodh, A. G.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse optical tomography of highly heterogeneous media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
[CrossRef] [PubMed]

X. D. Li, M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt. 35, 3746-3758 (1996).
[CrossRef] [PubMed]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities," J. Lumin. 60, 281-268 (1994).
[CrossRef]

Zacharakis, G.

G. Zacharakis, J. Ripoll, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

Zhang, C.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Zhang, C. P.

L. S. Zhang, L. Zhang, C. P. Zhang, S. W. Qi, T. Xu, and J. G. Tian, "Measurements of absorption and anisotropy coefficients of the fat emulsion intralipid-10%," Chin. Phys. Lett. 21, 2517-2520 (2004).
[CrossRef]

Zhang, L.

L. S. Zhang, L. Zhang, C. P. Zhang, S. W. Qi, T. Xu, and J. G. Tian, "Measurements of absorption and anisotropy coefficients of the fat emulsion intralipid-10%," Chin. Phys. Lett. 21, 2517-2520 (2004).
[CrossRef]

Zhang, L. S.

L. S. Zhang, L. Zhang, C. P. Zhang, S. W. Qi, T. Xu, and J. G. Tian, "Measurements of absorption and anisotropy coefficients of the fat emulsion intralipid-10%," Chin. Phys. Lett. 21, 2517-2520 (2004).
[CrossRef]

Zhang, M.

Zhang, Q.

Zhang, Z. H.

Zheng, G.

Zhou, L.

Zhou, S.

B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, "Precision localization of hidden absorbers in body tissues with phase-array optical systems," Rev. Sci. Instrum. 67, 4324-4332 (1996).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, "Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis," Appl. Phys. Lett. 89, 133902 (2006).
[CrossRef]

Aust. Phys. Eng. Sci. Med. (1)

M. D. Waterworth, B. J. Joblin, T. van Doorn, and H. E. Niesler, "Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging," Aust. Phys. Eng. Sci. Med. 18, 39-44 (1995).

Chem. Rev. (1)

J. Christensen, L. Norgaard, R. Bro, and S. B. Engelsen, "Multivariate autofluorescence of intact food systems," Chem. Rev. 106, 1979-1994 (2006).
[CrossRef] [PubMed]

Chin. Phys. Lett. (1)

L. S. Zhang, L. Zhang, C. P. Zhang, S. W. Qi, T. Xu, and J. G. Tian, "Measurements of absorption and anisotropy coefficients of the fat emulsion intralipid-10%," Chin. Phys. Lett. 21, 2517-2520 (2004).
[CrossRef]

Curr. Opin. Chem. Biol. (2)

J. V. Frangioni, "In vivo near-infrared fluorescence imaging," Curr. Opin. Chem. Biol. 7, 626-634 (2003).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

Dis. Markers (1)

A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).

IEEE Trans. Biomed. Eng. (1)

J. H. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse optical tomography of highly heterogeneous media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

G. Zacharakis, J. Ripoll, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006).
[CrossRef]

J. Biomed. Opt. (1)

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries," J. Biomed. Opt. 11, 044007 (2006).
[CrossRef] [PubMed]

J. Cell. Biochem. (1)

R. J. Gillies, "In vivo molecular imaging," J. Cell. Biochem. 87, 231-238 (2002).
[CrossRef]

J. Lumin. (1)

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities," J. Lumin. 60, 281-268 (1994).
[CrossRef]

Mol. Imaging (2)

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Photon. News (1)

W. B. Pogue and T. Hasan, "Targeting in photodynamic therapy and photo-imaging," Opt. Photon. News 14, 36-43 (2003).
[CrossRef]

Phys. Med. Biol. (8)

C. D' Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in turbid media," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef]

A. Eidsath, V. Chernomordik, A. Gandjbakhche, P. Smith, and A. Russo, "Three-dimensional localization of fluorescent masses deeply embedded in tissue," Phys. Med. Biol. 47, 4079-4092 (2002).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, 1-43 (2005).
[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

A. Soubret and V. Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Phys. Med. Biol. 22, 1779-1792 (1995).

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Phys. Med. Biol. 20, 299-309 (1993).

Rev. Sci. Instrum. (1)

B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, "Precision localization of hidden absorbers in body tissues with phase-array optical systems," Rev. Sci. Instrum. 67, 4324-4332 (1996).
[CrossRef]

SIAM (1)

S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM (Soc. Ind. Appl. Math.) Rev. 43, 129-159 (2001).
[CrossRef]

Top. Curr. Chem. (1)

K. Licha, "Contrast agents for optical imaging," Top. Curr. Chem. 222, 1-29 (2002).
[CrossRef]

Other (3)

E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging and tomography for cancer diagnostics," in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2004), pp. 1482-1485.

P. Mohajerani (Department of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Station, N.W., Atlanta, GA, 30332). A. A. Eftekhar, and A. Adibi are preparing a manuscript to be called "Localization of small fluorescent objects in tissue in the presence of diffuse background fluorescence."

A. B. Milstein, "Imaging of near-infrared fluorescence, absorption, and scattering in turbid media," Ph.D. dissertation (Purdue University, West Lafayette, Ind., 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Solution line for equation 1.5 x 1 + x 2 = 1 and contours of the L 1 and L 2 norms. Points A and B denote the points on the solution line (solid line) with minimum L 1 and L 2 norms, respectively. Point A is the sparsest solution, as it has only one nonzero coordinate, and point B is not a sparse solution, since all its coordinates are nonzero.

Fig. 2
Fig. 2

Schematic of the fiber-based cw FDOT setup. The surface measurements are collected via the multimode fiber and detected using the PMT after going through a filter to separate the emitted light from the excitation (pump) light. The lock-in technique allows for a high SNR in the emission measurements.

Fig. 3
Fig. 3

Configuration of the experiment. The large cylinder denotes the phantom. The source position and detector positions are depicted on the top of the phantom. Two squares show the locations of the small fluorescent objects (i.e., cuvettes). The smaller cylinder shown as the upper portion of the phantom depicts the optimization domain for which the inverse problem is solved.

Fig. 4
Fig. 4

(a) and (b) Fluorophore concentrations reconstructed using our approach and a Tikhonov-based approach, respectively. The axes ( x , y , z ) correspond to the spatial coordinates of the cylindrical phantom.

Tables (1)

Tables Icon

Table 1 Optical Properties of the Phantom Solution

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

K e Φ e ( i ) = Q e ( i ) ,
K m Φ m ( i ) = Q m ( i ) ,
Q m ( i ) = diag [ Φ e ( i ) ] X ,
M ( i ) = C Φ m ( i ) ,
M ( i ) = C K m 1   diag [ K e 1 Q e ( i ) ] X .
M = Z X + F ,
M = [ M ( 1 ) M ( N s ) ] , Z = [ C K m 1  diag ( K e 1 Q e ( 1 ) ) C K m 1  diag ( K e 1 Q e ( N s ) ) ] .
X 1 = arg min X 0 { f 1 ( X ) = M Z X 2 2 + α X 1 } ,
X 1 = W Y 1 ,
Y 1 = arg min Y > 0 { f 1 ( Y ) = M Z W Y 2 2 + α Y 1 } ,
W ( i , j ) = { Z i 2 1 i = j 0       i j , i , j = 1 , , K ,

Metrics