Abstract

Absolute photonic bandgaps of photonic crystals can be increased by reducing the structural symmetry and∕or by enhancing the refractive index contrast. We have experimentally demonstrated a single-beam holography for creating Ag nanoparticle-embedded 2D binary photonic microstructures by adding a different diameter rod in the center of each original 2D honeycomb lattice for simultaneously realizing both symmetry reduction and the enhancement of the index contrast of PC structures.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B 44, 13772-13774 (1991).
    [CrossRef]
  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
    [CrossRef] [PubMed]
  4. C. M. Anderson and K. P. Giapis, "Larger two-dimensional photonic bandgaps," Phys. Rev. Lett. 77, 2949-2952 (1996).
    [CrossRef] [PubMed]
  5. C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters," Nature 396, 444-446 (1998).
    [CrossRef]
  6. K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van Blaaderen, "Layer-by-layer growth of binary colloidal crystals," Science 296, 106-109 (2002).
    [CrossRef] [PubMed]
  7. L. Yuan, G. P. Wang, and X. Huang, "Arrangements of four beams for any Bravais lattice," Opt. Lett. 28, 1769-1771 (2003).
    [CrossRef] [PubMed]
  8. D. B. Mei, B. Y. Cheng, W. Hu, Z.-L. Li, and D. Z. Zhang, "Three-dimensional ordered patterns by light interference," Opt. Lett. 20, 429-431 (1995).
    [CrossRef] [PubMed]
  9. L. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102-241104 (2005).
    [CrossRef]
  10. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 526-528 (2003).
    [CrossRef]
  11. D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-205107 (2003).
    [CrossRef]
  12. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004).
    [CrossRef]
  13. O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905-042908 (2004).
    [CrossRef] [PubMed]
  14. M. Bockstaller, R. Kolb, E. L. Thomas, "Metallodielectric photonic crystals based on diblock copolymers," Adv. Mater. 13, 1783-1786 (2001).
    [CrossRef]
  15. G. P. Wang, Y. Yi, and W. Lin, "Tunable and omnidirectional photonic bandgap properties of one-dimensional photonic crystals fabricated by holography," J. Opt. Soc. Am. B 21, 554-561 (2004).
    [CrossRef]
  16. G. P. Wang, C. Tan, Y. Yi, and H. Shan, "Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single coutinuous wavelength laser beam," J. Mod. Opt. 50, 2155-2558 (2003).
  17. Y. Yang, G. P. Wang, J. Xie, and S. Zhang, "Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography," Appl. Phys. Lett. 86, 173108-173110 (2005).
    [CrossRef]
  18. I. Ei-Kady, M. M. Sigalas, R. Biswas, K. M. Ko, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000).
    [CrossRef]
  19. W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000).
    [CrossRef] [PubMed]
  20. H. M. Smith, Holographic Recording Materials (Springer-Verlag, 1977), Chap. 2, pp. 49-50.
  21. J. Xie, J. Z. Wen, G. P. Wang, and J. B. Wang, "Large area deposition of homogeneous metallic nanoparticles on polymer film and their applications," Acta Phys. Sin. 54, 242-244 (2005).
  22. S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004).
    [CrossRef]
  23. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003).
    [CrossRef] [PubMed]
  24. N. Suzuki, Y. Tomita, and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photonpolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
    [CrossRef]
  25. Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
    [CrossRef]

2005

L. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102-241104 (2005).
[CrossRef]

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, "Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography," Appl. Phys. Lett. 86, 173108-173110 (2005).
[CrossRef]

J. Xie, J. Z. Wen, G. P. Wang, and J. B. Wang, "Large area deposition of homogeneous metallic nanoparticles on polymer film and their applications," Acta Phys. Sin. 54, 242-244 (2005).

2004

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004).
[CrossRef]

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004).
[CrossRef]

O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905-042908 (2004).
[CrossRef] [PubMed]

G. P. Wang, Y. Yi, and W. Lin, "Tunable and omnidirectional photonic bandgap properties of one-dimensional photonic crystals fabricated by holography," J. Opt. Soc. Am. B 21, 554-561 (2004).
[CrossRef]

2003

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

G. P. Wang, C. Tan, Y. Yi, and H. Shan, "Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single coutinuous wavelength laser beam," J. Mod. Opt. 50, 2155-2558 (2003).

L. Yuan, G. P. Wang, and X. Huang, "Arrangements of four beams for any Bravais lattice," Opt. Lett. 28, 1769-1771 (2003).
[CrossRef] [PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003).
[CrossRef] [PubMed]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 526-528 (2003).
[CrossRef]

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-205107 (2003).
[CrossRef]

2002

K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van Blaaderen, "Layer-by-layer growth of binary colloidal crystals," Science 296, 106-109 (2002).
[CrossRef] [PubMed]

N. Suzuki, Y. Tomita, and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photonpolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

2001

M. Bockstaller, R. Kolb, E. L. Thomas, "Metallodielectric photonic crystals based on diblock copolymers," Adv. Mater. 13, 1783-1786 (2001).
[CrossRef]

2000

I. Ei-Kady, M. M. Sigalas, R. Biswas, K. M. Ko, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000).
[CrossRef] [PubMed]

1998

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters," Nature 396, 444-446 (1998).
[CrossRef]

1996

C. M. Anderson and K. P. Giapis, "Larger two-dimensional photonic bandgaps," Phys. Rev. Lett. 77, 2949-2952 (1996).
[CrossRef] [PubMed]

1995

1991

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B 44, 13772-13774 (1991).
[CrossRef]

1990

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

1987

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Anderson, C. M.

C. M. Anderson and K. P. Giapis, "Larger two-dimensional photonic bandgaps," Phys. Rev. Lett. 77, 2949-2952 (1996).
[CrossRef] [PubMed]

Bethell, D.

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters," Nature 396, 444-446 (1998).
[CrossRef]

Biswas, R.

I. Ei-Kady, M. M. Sigalas, R. Biswas, K. M. Ko, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

Bockstaller, M.

M. Bockstaller, R. Kolb, E. L. Thomas, "Metallodielectric photonic crystals based on diblock copolymers," Adv. Mater. 13, 1783-1786 (2001).
[CrossRef]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B 44, 13772-13774 (1991).
[CrossRef]

Brust, M.

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters," Nature 396, 444-446 (1998).
[CrossRef]

Chan, C. T.

L. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102-241104 (2005).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 526-528 (2003).
[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Chan, T. Y. M.

O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905-042908 (2004).
[CrossRef] [PubMed]

Chen, G.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004).
[CrossRef]

Cheng, B. Y.

Christova, C. G.

K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van Blaaderen, "Layer-by-layer growth of binary colloidal crystals," Science 296, 106-109 (2002).
[CrossRef] [PubMed]

Denning, R. G.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-205107 (2003).
[CrossRef]

Dullens, R. P. A.

K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van Blaaderen, "Layer-by-layer growth of binary colloidal crystals," Science 296, 106-109 (2002).
[CrossRef] [PubMed]

Ei-Kady, I.

I. Ei-Kady, M. M. Sigalas, R. Biswas, K. M. Ko, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

Fink, J.

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters," Nature 396, 444-446 (1998).
[CrossRef]

Fujii, T.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003).
[CrossRef] [PubMed]

Fujishima, A.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003).
[CrossRef] [PubMed]

Giapis, K. P.

C. M. Anderson and K. P. Giapis, "Larger two-dimensional photonic bandgaps," Phys. Rev. Lett. 77, 2949-2952 (1996).
[CrossRef] [PubMed]

Han, Y.-J.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004).
[CrossRef]

Hirao, K.

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004).
[CrossRef]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Hu, W.

Huang, X.

Jiang, X.

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004).
[CrossRef]

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B 44, 13772-13774 (1991).
[CrossRef]

John, S.

O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905-042908 (2004).
[CrossRef] [PubMed]

Kiely, C. J.

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters," Nature 396, 444-446 (1998).
[CrossRef]

Ko, K. M.

I. Ei-Kady, M. M. Sigalas, R. Biswas, K. M. Ko, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photonpolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

Kolb, R.

M. Bockstaller, R. Kolb, E. L. Thomas, "Metallodielectric photonic crystals based on diblock copolymers," Adv. Mater. 13, 1783-1786 (2001).
[CrossRef]

Kubota, Y.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003).
[CrossRef] [PubMed]

Lei, X. Y.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000).
[CrossRef] [PubMed]

Li, Z.-L.

Lin, W.

Maldovan, M.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004).
[CrossRef]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B 44, 13772-13774 (1991).
[CrossRef]

Mei, D. B.

Naoi, K.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003).
[CrossRef] [PubMed]

Ng, C. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 526-528 (2003).
[CrossRef]

Nishibiraki, H.

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

Niwa, C.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003).
[CrossRef] [PubMed]

Ohko, Y.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003).
[CrossRef] [PubMed]

Qiu, J.

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004).
[CrossRef]

Qu, S.

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004).
[CrossRef]

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B 44, 13772-13774 (1991).
[CrossRef]

Schiffrin, D. J.

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters," Nature 396, 444-446 (1998).
[CrossRef]

Shan, H.

G. P. Wang, C. Tan, Y. Yi, and H. Shan, "Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single coutinuous wavelength laser beam," J. Mod. Opt. 50, 2155-2558 (2003).

Sharp, D. N.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-205107 (2003).
[CrossRef]

Sheng, P.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 526-528 (2003).
[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000).
[CrossRef] [PubMed]

Sigalas, M. M.

I. Ei-Kady, M. M. Sigalas, R. Biswas, K. M. Ko, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

Smith, H. M.

H. M. Smith, Holographic Recording Materials (Springer-Verlag, 1977), Chap. 2, pp. 49-50.

Soukoulis, C. M.

I. Ei-Kady, M. M. Sigalas, R. Biswas, K. M. Ko, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Suzuki, N.

N. Suzuki, Y. Tomita, and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photonpolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

Tam, W. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 526-528 (2003).
[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000).
[CrossRef] [PubMed]

Tan, C.

G. P. Wang, C. Tan, Y. Yi, and H. Shan, "Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single coutinuous wavelength laser beam," J. Mod. Opt. 50, 2155-2558 (2003).

Tatsuma, T.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003).
[CrossRef] [PubMed]

Thomas, E. L.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004).
[CrossRef]

M. Bockstaller, R. Kolb, E. L. Thomas, "Metallodielectric photonic crystals based on diblock copolymers," Adv. Mater. 13, 1783-1786 (2001).
[CrossRef]

Toader, O.

O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905-042908 (2004).
[CrossRef] [PubMed]

Tomita, Y.

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photonpolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

Turberfield, A. J.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-205107 (2003).
[CrossRef]

Ullal, C. K.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004).
[CrossRef]

van Blaaderen, A.

K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van Blaaderen, "Layer-by-layer growth of binary colloidal crystals," Science 296, 106-109 (2002).
[CrossRef] [PubMed]

Velikov, K. P.

K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van Blaaderen, "Layer-by-layer growth of binary colloidal crystals," Science 296, 106-109 (2002).
[CrossRef] [PubMed]

Wang, G. P.

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, "Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography," Appl. Phys. Lett. 86, 173108-173110 (2005).
[CrossRef]

J. Xie, J. Z. Wen, G. P. Wang, and J. B. Wang, "Large area deposition of homogeneous metallic nanoparticles on polymer film and their applications," Acta Phys. Sin. 54, 242-244 (2005).

L. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102-241104 (2005).
[CrossRef]

G. P. Wang, Y. Yi, and W. Lin, "Tunable and omnidirectional photonic bandgap properties of one-dimensional photonic crystals fabricated by holography," J. Opt. Soc. Am. B 21, 554-561 (2004).
[CrossRef]

L. Yuan, G. P. Wang, and X. Huang, "Arrangements of four beams for any Bravais lattice," Opt. Lett. 28, 1769-1771 (2003).
[CrossRef] [PubMed]

G. P. Wang, C. Tan, Y. Yi, and H. Shan, "Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single coutinuous wavelength laser beam," J. Mod. Opt. 50, 2155-2558 (2003).

Wang, J. B.

J. Xie, J. Z. Wen, G. P. Wang, and J. B. Wang, "Large area deposition of homogeneous metallic nanoparticles on polymer film and their applications," Acta Phys. Sin. 54, 242-244 (2005).

Wang, X.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 526-528 (2003).
[CrossRef]

Wang, Z. L.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000).
[CrossRef] [PubMed]

Wen, J. Z.

J. Xie, J. Z. Wen, G. P. Wang, and J. B. Wang, "Large area deposition of homogeneous metallic nanoparticles on polymer film and their applications," Acta Phys. Sin. 54, 242-244 (2005).

Wong, K. S.

L. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102-241104 (2005).
[CrossRef]

Wu, L.

L. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102-241104 (2005).
[CrossRef]

Xie, J.

J. Xie, J. Z. Wen, G. P. Wang, and J. B. Wang, "Large area deposition of homogeneous metallic nanoparticles on polymer film and their applications," Acta Phys. Sin. 54, 242-244 (2005).

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, "Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography," Appl. Phys. Lett. 86, 173108-173110 (2005).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yang, S.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004).
[CrossRef]

Yang, Y.

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, "Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography," Appl. Phys. Lett. 86, 173108-173110 (2005).
[CrossRef]

Yi, Y.

G. P. Wang, Y. Yi, and W. Lin, "Tunable and omnidirectional photonic bandgap properties of one-dimensional photonic crystals fabricated by holography," J. Opt. Soc. Am. B 21, 554-561 (2004).
[CrossRef]

G. P. Wang, C. Tan, Y. Yi, and H. Shan, "Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single coutinuous wavelength laser beam," J. Mod. Opt. 50, 2155-2558 (2003).

Yuan, L.

Zeng, H.

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004).
[CrossRef]

Zhang, D. Z.

Zhang, S.

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, "Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography," Appl. Phys. Lett. 86, 173108-173110 (2005).
[CrossRef]

Zhang, W. Y.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000).
[CrossRef] [PubMed]

Zhao, C.

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004).
[CrossRef]

Zheng, D. G.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000).
[CrossRef] [PubMed]

Zhong, Y. C.

L. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102-241104 (2005).
[CrossRef]

Zhu, C.

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004).
[CrossRef]

Acta Phys. Sin.

J. Xie, J. Z. Wen, G. P. Wang, and J. B. Wang, "Large area deposition of homogeneous metallic nanoparticles on polymer film and their applications," Acta Phys. Sin. 54, 242-244 (2005).

Adv. Mater.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 526-528 (2003).
[CrossRef]

M. Bockstaller, R. Kolb, E. L. Thomas, "Metallodielectric photonic crystals based on diblock copolymers," Adv. Mater. 13, 1783-1786 (2001).
[CrossRef]

Appl. Phys. Lett.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004).
[CrossRef]

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, "Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography," Appl. Phys. Lett. 86, 173108-173110 (2005).
[CrossRef]

L. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102-241104 (2005).
[CrossRef]

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photonpolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

J. Mod. Opt.

G. P. Wang, C. Tan, Y. Yi, and H. Shan, "Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single coutinuous wavelength laser beam," J. Mod. Opt. 50, 2155-2558 (2003).

J. Opt. Soc. Am. B

Nat. Mater.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003).
[CrossRef] [PubMed]

Nature

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters," Nature 396, 444-446 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. B

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B 44, 13772-13774 (1991).
[CrossRef]

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-205107 (2003).
[CrossRef]

I. Ei-Kady, M. M. Sigalas, R. Biswas, K. M. Ko, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

Phys. Rev. Lett.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000).
[CrossRef] [PubMed]

O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905-042908 (2004).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

C. M. Anderson and K. P. Giapis, "Larger two-dimensional photonic bandgaps," Phys. Rev. Lett. 77, 2949-2952 (1996).
[CrossRef] [PubMed]

Science

K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van Blaaderen, "Layer-by-layer growth of binary colloidal crystals," Science 296, 106-109 (2002).
[CrossRef] [PubMed]

Other

H. M. Smith, Holographic Recording Materials (Springer-Verlag, 1977), Chap. 2, pp. 49-50.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of (a) top-cut QP and (b) beam configuration on the bottom of QP. θ = 34.87 ° , β = 30 ° , α = 60 ° , l = 12.2   mm , L = 48   mm , h = 14.62   mm ; K 0 , K 1 , K 2 , and K 3 denote the propagation vectors of the four interference beams, respectively.

Fig. 2
Fig. 2

(a) Simulated 2D interference pattern on the bottom of QP as K 0 is introduced with the same phase and intensity as K 1 , K 2 , and K 3 . (b) Image taken with a CCD camera, bar = 2   μm . (c) Top view of SEM images of the interfered pattern recorded in a photosensitive layer, bar = 2   μm . (d) AFM image, bar =  500   nm .

Fig. 3
Fig. 3

(a) Simulated 2D interference pattern on the bottom of QP as K 0 is introduced with 1 / 4 intensity and π-phase delay, respectively, of K 1 , K 2 , and K 3 . (b) Image taken with a CCD camera, bar = 2   μm . (c) Top view of SEM images of the interfered pattern recorded in a photosensitive layer, bar = 2   μm . (d) AFM image, bar =  500   nm .

Equations (58)

Equations on this page are rendered with MathJax. Learn more.

n = 1.52
l = 12.2
L = 48
h = 14.62 mm
α = 60 °
θ = 34.87 °
β = 30 °
K 0
K 1
K 2
K 3
K 1
K 2
K 3
K 0
K 1
K 1 = K [ sin ( θ ) i + cos ( θ ) k ]
K 2 = K [ sin ( θ ) sin ( β ) i + sin ( θ ) cos ( β ) j + cos ( θ ) k ]
K 3 = K [ sin ( θ ) sin ( β ) i sin ( θ ) cos ( β ) j + cos ( θ ) k ]
K 0 = K [ sin ( θ ) i + cos ( θ ) k ]
K = 2 π / λ
K 0
K 0
1 / 4
K 1
K 2
K 3
A g +
K 0
A g + + e A g ,
( ZrO 2
TiO 2
SiO 2
θ = 34.87 °
β = 30 °
α = 60 °
l = 12.2   mm
L = 48   mm
h = 14.62   mm
K 0
K 1
K 2
K 3
K 0
K 1
K 2
K 3
2   μm
2   μm
500   nm
K 0
1 / 4
K 1
K 2
K 3
2   μm
2   μm
500   nm

Metrics