Abstract

The mode-locking mechanism of a single-section multi-spatial-mode Fabry–Perot semiconductor laser is analyzed by the additive pulse mode-locking (APM) master equation model. Critical parameters of the equivalent saturable absorber as well as the self-phase modulation are estimated. The mode-locking operation regime in terms of pulse chirp and output power is predicted by the APM model and the prediction is shown to be in good agreement with the experimental results of a 40  GHz, 6.7  ps pulse width mode-locked operation at 1.56μm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, "The Kuramoto model: a simple paradigm for synchronization phenomena," Rev. Mod. Phys. 77, 137-185 (2005).
    [CrossRef]
  2. L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, "Glassy behavior of light," Phys. Rev. Lett. 96, 065702 (2006).
  3. D. Gloge and T. P. Lee, "Signal structure of continuously self-pulsing GaAs laser," IEEE J. Quantum Electron. 7, 43-45 (1971).
    [CrossRef]
  4. K. Ogawa and R. S. Vodhanel, "Measurements of mode partition noise of laser diodes," IEEE J. Quantum Electron. 18, 1090-1093 (1982).
    [CrossRef]
  5. K. Otsuka, "Multimode laser dynamics," Prog. Quantum Electron. 23, 97-129 (1999).
    [CrossRef]
  6. G. P. Agrawal, Fiber-Optic Communication Systems, (Wiley, 1992), Chap. 3.
  7. P. Mandel, A. Nguyen, and K. Otsuka, "Universal dynamical properties of three-mode Fabry-Perot lasers," Quantum Semiclassic Opt. 9, 365-380 (1997).
    [CrossRef]
  8. S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, "Global quantitative predictions of complex laser dynamics," Phys. Rev. E 65, 045207 (2002).
  9. L. F. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, and G. L. J. Rikken, "Passive FM locking in InGaAsP semiconductor lasers," IEEE J. Quantum Electron. 25, 1385-1392 (1989).
    [CrossRef]
  10. K. Sato, "Optical pulse generation using Fabry-Pérot lasers under continuous-wave operation," IEEE J. Sel. Top. Quantum. Electron. 9, 1288-1293 (2003).
    [CrossRef]
  11. C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.
  12. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models, and applications," IEE Proc. Optoelectron. 147, 251-278 (2000).
    [CrossRef]
  13. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
    [CrossRef] [PubMed]
  14. W. Yang, "Self-starting mode locking by multi-spatial-mode active waveguiding," Opt. Lett. 31, 2287-2289 (2006).
    [CrossRef] [PubMed]
  15. M. Zirngibl, C. H. Joyner, and B. Glance, "Digitally tunable channel dropping filter equalizer base on waveguide grating router and optical amplifier integration," IEEE Photon. Technol. Lett. 6, 513-515 (1994).
    [CrossRef]
  16. D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002).
    [CrossRef]
  17. P. Bernasconi, L. Zhang, W. Yang, N. Sauer, L. L. Buhl, J. H. Sinsky, I. Kang, S. Chandrasekhar, and D. T. Neilson, "Monolithically integrated 40-Gb/s switchable wavelength converter," J. Lightwave Technol. 24, 71-76 (2006).
    [CrossRef]
  18. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode locking," J. Opt. Soc. Am. B 8, 2068-2076 (1991).
    [CrossRef]

2006 (2)

2005 (1)

J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, "The Kuramoto model: a simple paradigm for synchronization phenomena," Rev. Mod. Phys. 77, 137-185 (2005).
[CrossRef]

2003 (1)

K. Sato, "Optical pulse generation using Fabry-Pérot lasers under continuous-wave operation," IEEE J. Sel. Top. Quantum. Electron. 9, 1288-1293 (2003).
[CrossRef]

2002 (1)

D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002).
[CrossRef]

2000 (2)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models, and applications," IEE Proc. Optoelectron. 147, 251-278 (2000).
[CrossRef]

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

1999 (1)

K. Otsuka, "Multimode laser dynamics," Prog. Quantum Electron. 23, 97-129 (1999).
[CrossRef]

1997 (1)

P. Mandel, A. Nguyen, and K. Otsuka, "Universal dynamical properties of three-mode Fabry-Perot lasers," Quantum Semiclassic Opt. 9, 365-380 (1997).
[CrossRef]

1994 (1)

M. Zirngibl, C. H. Joyner, and B. Glance, "Digitally tunable channel dropping filter equalizer base on waveguide grating router and optical amplifier integration," IEEE Photon. Technol. Lett. 6, 513-515 (1994).
[CrossRef]

1991 (1)

1989 (1)

L. F. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, and G. L. J. Rikken, "Passive FM locking in InGaAsP semiconductor lasers," IEEE J. Quantum Electron. 25, 1385-1392 (1989).
[CrossRef]

1982 (1)

K. Ogawa and R. S. Vodhanel, "Measurements of mode partition noise of laser diodes," IEEE J. Quantum Electron. 18, 1090-1093 (1982).
[CrossRef]

1971 (1)

D. Gloge and T. P. Lee, "Signal structure of continuously self-pulsing GaAs laser," IEEE J. Quantum Electron. 7, 43-45 (1971).
[CrossRef]

Acebrón, J. A.

J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, "The Kuramoto model: a simple paradigm for synchronization phenomena," Rev. Mod. Phys. 77, 137-185 (2005).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, (Wiley, 1992), Chap. 3.

Angelani, L.

L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, "Glassy behavior of light," Phys. Rev. Lett. 96, 065702 (2006).

Aubin, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.

Avrutin, E. A.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models, and applications," IEE Proc. Optoelectron. 147, 251-278 (2000).
[CrossRef]

Baillargeon, J. N.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

Bernasconi, P.

Bernasconi, P. G.

D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002).
[CrossRef]

Bonilla, L. L.

J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, "The Kuramoto model: a simple paradigm for synchronization phenomena," Rev. Mod. Phys. 77, 137-185 (2005).
[CrossRef]

Buhl, L. L.

Cabot, S.

D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002).
[CrossRef]

Capasso, F.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

Chandrasekhar, S.

Cho, A. Y.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

Conti, C.

L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, "Glassy behavior of light," Phys. Rev. Lett. 96, 065702 (2006).

Fujimoto, J. G.

Glance, B.

M. Zirngibl, C. H. Joyner, and B. Glance, "Digitally tunable channel dropping filter equalizer base on waveguide grating router and optical amplifier integration," IEEE Photon. Technol. Lett. 6, 513-515 (1994).
[CrossRef]

Gloge, D.

D. Gloge and T. P. Lee, "Signal structure of continuously self-pulsing GaAs laser," IEEE J. Quantum Electron. 7, 43-45 (1971).
[CrossRef]

Gmachl, C.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

Gosset, C.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.

Haus, H. A.

Hutchinson, A. L.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

Ippen, E. P.

Joyner, C. H.

M. Zirngibl, C. H. Joyner, and B. Glance, "Digitally tunable channel dropping filter equalizer base on waveguide grating router and optical amplifier integration," IEEE Photon. Technol. Lett. 6, 513-515 (1994).
[CrossRef]

Kang, I.

Krauskopf, B.

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, "Global quantitative predictions of complex laser dynamics," Phys. Rev. E 65, 045207 (2002).

Kuindersma, P. I.

L. F. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, and G. L. J. Rikken, "Passive FM locking in InGaAsP semiconductor lasers," IEEE J. Quantum Electron. 25, 1385-1392 (1989).
[CrossRef]

Landreau, J.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.

Lee, T. P.

D. Gloge and T. P. Lee, "Signal structure of continuously self-pulsing GaAs laser," IEEE J. Quantum Electron. 7, 43-45 (1971).
[CrossRef]

Lelarge, F.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.

Lenstra, D.

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, "Global quantitative predictions of complex laser dynamics," Phys. Rev. E 65, 045207 (2002).

Liu, H. C.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

Mandel, P.

P. Mandel, A. Nguyen, and K. Otsuka, "Universal dynamical properties of three-mode Fabry-Perot lasers," Quantum Semiclassic Opt. 9, 365-380 (1997).
[CrossRef]

Marsh, J. H.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models, and applications," IEE Proc. Optoelectron. 147, 251-278 (2000).
[CrossRef]

Martinez, A.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.

Merghem, K.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.

Miller, B. I.

D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002).
[CrossRef]

Moreau, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.

Neilson, D. T.

Nguyen, A.

P. Mandel, A. Nguyen, and K. Otsuka, "Universal dynamical properties of three-mode Fabry-Perot lasers," Quantum Semiclassic Opt. 9, 365-380 (1997).
[CrossRef]

Ogawa, K.

K. Ogawa and R. S. Vodhanel, "Measurements of mode partition noise of laser diodes," IEEE J. Quantum Electron. 18, 1090-1093 (1982).
[CrossRef]

Otsuka, K.

K. Otsuka, "Multimode laser dynamics," Prog. Quantum Electron. 23, 97-129 (1999).
[CrossRef]

P. Mandel, A. Nguyen, and K. Otsuka, "Universal dynamical properties of three-mode Fabry-Perot lasers," Quantum Semiclassic Opt. 9, 365-380 (1997).
[CrossRef]

Paiella, R.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

Patriarche, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.

Portnoi, E. L.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models, and applications," IEE Proc. Optoelectron. 147, 251-278 (2000).
[CrossRef]

Ramdane, A.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.

Rikken, G. L. J.

L. F. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, and G. L. J. Rikken, "Passive FM locking in InGaAsP semiconductor lasers," IEEE J. Quantum Electron. 25, 1385-1392 (1989).
[CrossRef]

Ritort, F.

J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, "The Kuramoto model: a simple paradigm for synchronization phenomena," Rev. Mod. Phys. 77, 137-185 (2005).
[CrossRef]

Ruocco, G.

L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, "Glassy behavior of light," Phys. Rev. Lett. 96, 065702 (2006).

Sato, K.

K. Sato, "Optical pulse generation using Fabry-Pérot lasers under continuous-wave operation," IEEE J. Sel. Top. Quantum. Electron. 9, 1288-1293 (2003).
[CrossRef]

Sauer, N.

Sauer, N. J.

D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002).
[CrossRef]

Simpson, T. B.

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, "Global quantitative predictions of complex laser dynamics," Phys. Rev. E 65, 045207 (2002).

Sinsky, J. H.

Sivco, D. L.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

Spigler, R.

J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, "The Kuramoto model: a simple paradigm for synchronization phenomena," Rev. Mod. Phys. 77, 137-185 (2005).
[CrossRef]

Stulz, L.

D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002).
[CrossRef]

Thijs, P. J. A.

L. F. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, and G. L. J. Rikken, "Passive FM locking in InGaAsP semiconductor lasers," IEEE J. Quantum Electron. 25, 1385-1392 (1989).
[CrossRef]

Tiemeijer, L. F.

L. F. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, and G. L. J. Rikken, "Passive FM locking in InGaAsP semiconductor lasers," IEEE J. Quantum Electron. 25, 1385-1392 (1989).
[CrossRef]

Van Thourhout, D.

D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002).
[CrossRef]

Vicente, C. J. P.

J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, "The Kuramoto model: a simple paradigm for synchronization phenomena," Rev. Mod. Phys. 77, 137-185 (2005).
[CrossRef]

Vodhanel, R. S.

K. Ogawa and R. S. Vodhanel, "Measurements of mode partition noise of laser diodes," IEEE J. Quantum Electron. 18, 1090-1093 (1982).
[CrossRef]

Wieczorek, S.

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, "Global quantitative predictions of complex laser dynamics," Phys. Rev. E 65, 045207 (2002).

Yang, W.

Zamponi, F.

L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, "Glassy behavior of light," Phys. Rev. Lett. 96, 065702 (2006).

Zhang, L.

P. Bernasconi, L. Zhang, W. Yang, N. Sauer, L. L. Buhl, J. H. Sinsky, I. Kang, S. Chandrasekhar, and D. T. Neilson, "Monolithically integrated 40-Gb/s switchable wavelength converter," J. Lightwave Technol. 24, 71-76 (2006).
[CrossRef]

D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002).
[CrossRef]

Zirngibl, M.

M. Zirngibl, C. H. Joyner, and B. Glance, "Digitally tunable channel dropping filter equalizer base on waveguide grating router and optical amplifier integration," IEEE Photon. Technol. Lett. 6, 513-515 (1994).
[CrossRef]

IEE Proc. Optoelectron. (1)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models, and applications," IEE Proc. Optoelectron. 147, 251-278 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

L. F. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, and G. L. J. Rikken, "Passive FM locking in InGaAsP semiconductor lasers," IEEE J. Quantum Electron. 25, 1385-1392 (1989).
[CrossRef]

D. Gloge and T. P. Lee, "Signal structure of continuously self-pulsing GaAs laser," IEEE J. Quantum Electron. 7, 43-45 (1971).
[CrossRef]

K. Ogawa and R. S. Vodhanel, "Measurements of mode partition noise of laser diodes," IEEE J. Quantum Electron. 18, 1090-1093 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (2)

K. Sato, "Optical pulse generation using Fabry-Pérot lasers under continuous-wave operation," IEEE J. Sel. Top. Quantum. Electron. 9, 1288-1293 (2003).
[CrossRef]

D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Zirngibl, C. H. Joyner, and B. Glance, "Digitally tunable channel dropping filter equalizer base on waveguide grating router and optical amplifier integration," IEEE Photon. Technol. Lett. 6, 513-515 (1994).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Prog. Quantum Electron. (1)

K. Otsuka, "Multimode laser dynamics," Prog. Quantum Electron. 23, 97-129 (1999).
[CrossRef]

Quantum Semiclassic Opt. (1)

P. Mandel, A. Nguyen, and K. Otsuka, "Universal dynamical properties of three-mode Fabry-Perot lasers," Quantum Semiclassic Opt. 9, 365-380 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, "The Kuramoto model: a simple paradigm for synchronization phenomena," Rev. Mod. Phys. 77, 137-185 (2005).
[CrossRef]

Science (1)

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

Other (4)

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.

L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, "Glassy behavior of light," Phys. Rev. Lett. 96, 065702 (2006).

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, "Global quantitative predictions of complex laser dynamics," Phys. Rev. E 65, 045207 (2002).

G. P. Agrawal, Fiber-Optic Communication Systems, (Wiley, 1992), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Active waveguide structure. The structure supports multiple spatial modes without severely limiting the cavity length at which the fast gain saturation dominates the effective saturable absorber action. It also provides large differences in mode confinement as well as the scattering losses between spatial modes.

Fig. 2
Fig. 2

(Color online) Equivalent SA coefficient γ (left axis) and the ratio of normalized SPM parameter to SA parameter δ n / γ n (right axis) for different average in-cavity power.

Fig. 3
Fig. 3

Optical spectrum of the single-section MSM FP laser diode. The center wavelength is 1565   nm and the FWHM is 8   nm . The moderate modulation of the spectral envelope is due to SPM.

Fig. 4
Fig. 4

(Color online) Dotted curve, background-free intensity autocorrelation trace of the mode-locked pulses; solid curve, fitting curve to a hyperbolic secant pulse with FWHM of 6.7   ps .

Fig. 5
Fig. 5

(Color online) rf spectrum of the optical pulse train after photodetection. The rf spectral linewidth is below 1   MHz . The inset shows full span rf spectrum with no indication of slow components that typically show up in unstable self-pulsation due to relaxation oscillation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ j θ l + g ( 1 + 1 Ω 2 d 2 d t 2 ) + j D d 2 d t 2 + ( γ j δ ) | a | 2 ] a = 0 ,

Metrics