Abstract

A study of the practicality a simple technique for obtaining time-domain information that uses continuous wave detection of fluorescence is presented. We show that this technique has potential for use in assays for which a change in the lifetime of an indicator occurs in reaction to an analyte, in fluorescence resonance energy transfer, for example, and could be particularly important when one is carrying out such measurements in the scaled- down environment of a lab on a chip (biochip). A rate-equation model is presented that allows an objective analysis to be made of the relative importance of the key measurement parameters: optical saturation of the fluorophore and period of the excitation pulse. An experimental demonstration of the technique that uses a cuvette-based analysis of a carbocyanine dye and for which the excitation source is a 650  nm wavelength, self-pulsing AlGaInP laser diode is compared with the model.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, 1999).
  2. C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proc. IEEE 92, 154-173 (2004).
    [CrossRef]
  3. R. Pethig, J. P. H. Burt, A Parton, N. Rizvi, M. S. Talary, and J. A. Tame, "Development of biofactory-on-a-chip technology using excimer laser micromachining," J. Micromech. Microeng. 8, 57-63 (1998).
    [CrossRef]
  4. J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Performance of an integrated microoptical system for fluorescence detection in microfluidic systems," Anal. Chem. 74, 3400-3407 (2002).
    [CrossRef] [PubMed]
  5. B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development," Adv. Drug Deliv. Rev. 55, 349-377 (2003).
    [CrossRef] [PubMed]
  6. E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
    [CrossRef]
  7. D. V. O'Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, 1984).
  8. H. D. Summers and P. Rees, "Thermal limitation of self-pulsation in 650 nm AlGaInP laser diodes with an epitaxially integrated absorber," Appl. Phys. Lett. 71, 2665-2667 (1997).
    [CrossRef]
  9. H. D. Summers and P. Rees, "High-temperature operation of 650-nm wavelength AlGaInP self-pulsating laser diodes," IEEE Photon. Technol. Lett. 10, 1217-1219 (1998).
    [CrossRef]
  10. D. R. Jones, P. Rees, I. Pierce, and H. D. Summers, "Theoretical optimization of self-pulsating 650-nm-wavelength AlGaInP laser diodes," IEEE J. Sel. Top. Quantum Electron. 5, 740-744 (1999).
    [CrossRef]
  11. H. D. Summers, C. H. Molloy, P. M. Smowton, P. Rees, I. Pierce, and D. R. Jones, "Experimental analysis of self-pulsation in 650-nm-wavelength AlGaInP laser diodes with epitaxial absorbing layers," IEEE J. Sel. Top. Quantum Electron. 5, 745-749 (1999).
    [CrossRef]
  12. V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic study and evaluation of red-absorbing fluorescent dyes," Bioconjugate Chem. 14, 195-204 (2003).
    [CrossRef]
  13. G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, "Fluorescence decay time of single semiconductor nanocrystals," Phys. Rev. Lett. 88, 137401 (2002).
    [CrossRef] [PubMed]
  14. I. Chung and M. G. Bawendi, "Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots," Phys. Rev. B 70, 165304 (2004).
    [CrossRef]
  15. P. Alivisatos, "The use of nanocrystals in biological detection," Nature Biotechnol. 22, 47-52 (2004).

2004 (4)

C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proc. IEEE 92, 154-173 (2004).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

I. Chung and M. G. Bawendi, "Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots," Phys. Rev. B 70, 165304 (2004).
[CrossRef]

P. Alivisatos, "The use of nanocrystals in biological detection," Nature Biotechnol. 22, 47-52 (2004).

2003 (2)

V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic study and evaluation of red-absorbing fluorescent dyes," Bioconjugate Chem. 14, 195-204 (2003).
[CrossRef]

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development," Adv. Drug Deliv. Rev. 55, 349-377 (2003).
[CrossRef] [PubMed]

2002 (2)

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Performance of an integrated microoptical system for fluorescence detection in microfluidic systems," Anal. Chem. 74, 3400-3407 (2002).
[CrossRef] [PubMed]

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, "Fluorescence decay time of single semiconductor nanocrystals," Phys. Rev. Lett. 88, 137401 (2002).
[CrossRef] [PubMed]

1999 (2)

D. R. Jones, P. Rees, I. Pierce, and H. D. Summers, "Theoretical optimization of self-pulsating 650-nm-wavelength AlGaInP laser diodes," IEEE J. Sel. Top. Quantum Electron. 5, 740-744 (1999).
[CrossRef]

H. D. Summers, C. H. Molloy, P. M. Smowton, P. Rees, I. Pierce, and D. R. Jones, "Experimental analysis of self-pulsation in 650-nm-wavelength AlGaInP laser diodes with epitaxial absorbing layers," IEEE J. Sel. Top. Quantum Electron. 5, 745-749 (1999).
[CrossRef]

1998 (2)

R. Pethig, J. P. H. Burt, A Parton, N. Rizvi, M. S. Talary, and J. A. Tame, "Development of biofactory-on-a-chip technology using excimer laser micromachining," J. Micromech. Microeng. 8, 57-63 (1998).
[CrossRef]

H. D. Summers and P. Rees, "High-temperature operation of 650-nm wavelength AlGaInP self-pulsating laser diodes," IEEE Photon. Technol. Lett. 10, 1217-1219 (1998).
[CrossRef]

1997 (1)

H. D. Summers and P. Rees, "Thermal limitation of self-pulsation in 650 nm AlGaInP laser diodes with an epitaxially integrated absorber," Appl. Phys. Lett. 71, 2665-2667 (1997).
[CrossRef]

1984 (1)

D. V. O'Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, 1984).

Ahn, C. H.

C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proc. IEEE 92, 154-173 (2004).
[CrossRef]

Alivisatos, P.

P. Alivisatos, "The use of nanocrystals in biological detection," Nature Biotechnol. 22, 47-52 (2004).

Bardell, R. L.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development," Adv. Drug Deliv. Rev. 55, 349-377 (2003).
[CrossRef] [PubMed]

Bawendi, M. G.

I. Chung and M. G. Bawendi, "Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots," Phys. Rev. B 70, 165304 (2004).
[CrossRef]

Beaucage, G.

C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proc. IEEE 92, 154-173 (2004).
[CrossRef]

Bohnenberger, J.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, "Fluorescence decay time of single semiconductor nanocrystals," Phys. Rev. Lett. 88, 137401 (2002).
[CrossRef] [PubMed]

Burt, J. P. H.

R. Pethig, J. P. H. Burt, A Parton, N. Rizvi, M. S. Talary, and J. A. Tame, "Development of biofactory-on-a-chip technology using excimer laser micromachining," J. Micromech. Microeng. 8, 57-63 (1998).
[CrossRef]

Buschmann, V.

V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic study and evaluation of red-absorbing fluorescent dyes," Bioconjugate Chem. 14, 195-204 (2003).
[CrossRef]

Cabrera, C. R.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development," Adv. Drug Deliv. Rev. 55, 349-377 (2003).
[CrossRef] [PubMed]

Carey, G.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Choi, J.-W.

C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proc. IEEE 92, 154-173 (2004).
[CrossRef]

Chung, I.

I. Chung and M. G. Bawendi, "Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots," Phys. Rev. B 70, 165304 (2004).
[CrossRef]

Cook, L. J.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Dandliker, R.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Performance of an integrated microoptical system for fluorescence detection in microfluidic systems," Anal. Chem. 74, 3400-3407 (2002).
[CrossRef] [PubMed]

de Rooij, N. F.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Performance of an integrated microoptical system for fluorescence detection in microfluidic systems," Anal. Chem. 74, 3400-3407 (2002).
[CrossRef] [PubMed]

Deich, J.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Ha, W.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Harris, J. S.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Herzig, H. P.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Performance of an integrated microoptical system for fluorescence detection in microfluidic systems," Anal. Chem. 74, 3400-3407 (2002).
[CrossRef] [PubMed]

Jones, D. R.

D. R. Jones, P. Rees, I. Pierce, and H. D. Summers, "Theoretical optimization of self-pulsating 650-nm-wavelength AlGaInP laser diodes," IEEE J. Sel. Top. Quantum Electron. 5, 740-744 (1999).
[CrossRef]

H. D. Summers, C. H. Molloy, P. M. Smowton, P. Rees, I. Pierce, and D. R. Jones, "Experimental analysis of self-pulsation in 650-nm-wavelength AlGaInP laser diodes with epitaxial absorbing layers," IEEE J. Sel. Top. Quantum Electron. 5, 745-749 (1999).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, 1999).

Lee, J. Y.

C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proc. IEEE 92, 154-173 (2004).
[CrossRef]

Lee, J.-B.

C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proc. IEEE 92, 154-173 (2004).
[CrossRef]

Levi, O.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Mews, A.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, "Fluorescence decay time of single semiconductor nanocrystals," Phys. Rev. Lett. 88, 137401 (2002).
[CrossRef] [PubMed]

Moerner, W. E.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Molloy, C. H.

H. D. Summers, C. H. Molloy, P. M. Smowton, P. Rees, I. Pierce, and D. R. Jones, "Experimental analysis of self-pulsation in 650-nm-wavelength AlGaInP laser diodes with epitaxial absorbing layers," IEEE J. Sel. Top. Quantum Electron. 5, 745-749 (1999).
[CrossRef]

Nevin, J. H.

C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proc. IEEE 92, 154-173 (2004).
[CrossRef]

O'Connor, D. V.

D. V. O'Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, 1984).

Parton, A

R. Pethig, J. P. H. Burt, A Parton, N. Rizvi, M. S. Talary, and J. A. Tame, "Development of biofactory-on-a-chip technology using excimer laser micromachining," J. Micromech. Microeng. 8, 57-63 (1998).
[CrossRef]

Pethig, R.

R. Pethig, J. P. H. Burt, A Parton, N. Rizvi, M. S. Talary, and J. A. Tame, "Development of biofactory-on-a-chip technology using excimer laser micromachining," J. Micromech. Microeng. 8, 57-63 (1998).
[CrossRef]

Phillips, D.

D. V. O'Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, 1984).

Pierce, I.

H. D. Summers, C. H. Molloy, P. M. Smowton, P. Rees, I. Pierce, and D. R. Jones, "Experimental analysis of self-pulsation in 650-nm-wavelength AlGaInP laser diodes with epitaxial absorbing layers," IEEE J. Sel. Top. Quantum Electron. 5, 745-749 (1999).
[CrossRef]

D. R. Jones, P. Rees, I. Pierce, and H. D. Summers, "Theoretical optimization of self-pulsating 650-nm-wavelength AlGaInP laser diodes," IEEE J. Sel. Top. Quantum Electron. 5, 740-744 (1999).
[CrossRef]

Potapova, I.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, "Fluorescence decay time of single semiconductor nanocrystals," Phys. Rev. Lett. 88, 137401 (2002).
[CrossRef] [PubMed]

Puntambekar, A.

C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proc. IEEE 92, 154-173 (2004).
[CrossRef]

Rees, P.

H. D. Summers, C. H. Molloy, P. M. Smowton, P. Rees, I. Pierce, and D. R. Jones, "Experimental analysis of self-pulsation in 650-nm-wavelength AlGaInP laser diodes with epitaxial absorbing layers," IEEE J. Sel. Top. Quantum Electron. 5, 745-749 (1999).
[CrossRef]

D. R. Jones, P. Rees, I. Pierce, and H. D. Summers, "Theoretical optimization of self-pulsating 650-nm-wavelength AlGaInP laser diodes," IEEE J. Sel. Top. Quantum Electron. 5, 740-744 (1999).
[CrossRef]

H. D. Summers and P. Rees, "High-temperature operation of 650-nm wavelength AlGaInP self-pulsating laser diodes," IEEE Photon. Technol. Lett. 10, 1217-1219 (1998).
[CrossRef]

H. D. Summers and P. Rees, "Thermal limitation of self-pulsation in 650 nm AlGaInP laser diodes with an epitaxially integrated absorber," Appl. Phys. Lett. 71, 2665-2667 (1997).
[CrossRef]

Rizvi, N.

R. Pethig, J. P. H. Burt, A Parton, N. Rizvi, M. S. Talary, and J. A. Tame, "Development of biofactory-on-a-chip technology using excimer laser micromachining," J. Micromech. Microeng. 8, 57-63 (1998).
[CrossRef]

Roulet, J. C.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Performance of an integrated microoptical system for fluorescence detection in microfluidic systems," Anal. Chem. 74, 3400-3407 (2002).
[CrossRef] [PubMed]

Sauer, M.

V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic study and evaluation of red-absorbing fluorescent dyes," Bioconjugate Chem. 14, 195-204 (2003).
[CrossRef]

Schlegel, G.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, "Fluorescence decay time of single semiconductor nanocrystals," Phys. Rev. Lett. 88, 137401 (2002).
[CrossRef] [PubMed]

Smith, S. J.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Smowton, P. M.

H. D. Summers, C. H. Molloy, P. M. Smowton, P. Rees, I. Pierce, and D. R. Jones, "Experimental analysis of self-pulsation in 650-nm-wavelength AlGaInP laser diodes with epitaxial absorbing layers," IEEE J. Sel. Top. Quantum Electron. 5, 745-749 (1999).
[CrossRef]

Summers, H. D.

H. D. Summers, C. H. Molloy, P. M. Smowton, P. Rees, I. Pierce, and D. R. Jones, "Experimental analysis of self-pulsation in 650-nm-wavelength AlGaInP laser diodes with epitaxial absorbing layers," IEEE J. Sel. Top. Quantum Electron. 5, 745-749 (1999).
[CrossRef]

D. R. Jones, P. Rees, I. Pierce, and H. D. Summers, "Theoretical optimization of self-pulsating 650-nm-wavelength AlGaInP laser diodes," IEEE J. Sel. Top. Quantum Electron. 5, 740-744 (1999).
[CrossRef]

H. D. Summers and P. Rees, "High-temperature operation of 650-nm wavelength AlGaInP self-pulsating laser diodes," IEEE Photon. Technol. Lett. 10, 1217-1219 (1998).
[CrossRef]

H. D. Summers and P. Rees, "Thermal limitation of self-pulsation in 650 nm AlGaInP laser diodes with an epitaxially integrated absorber," Appl. Phys. Lett. 71, 2665-2667 (1997).
[CrossRef]

Talary, M. S.

R. Pethig, J. P. H. Burt, A Parton, N. Rizvi, M. S. Talary, and J. A. Tame, "Development of biofactory-on-a-chip technology using excimer laser micromachining," J. Micromech. Microeng. 8, 57-63 (1998).
[CrossRef]

Tame, J. A.

R. Pethig, J. P. H. Burt, A Parton, N. Rizvi, M. S. Talary, and J. A. Tame, "Development of biofactory-on-a-chip technology using excimer laser micromachining," J. Micromech. Microeng. 8, 57-63 (1998).
[CrossRef]

Thrush, E.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Verpoorte, E.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Performance of an integrated microoptical system for fluorescence detection in microfluidic systems," Anal. Chem. 74, 3400-3407 (2002).
[CrossRef] [PubMed]

Volkel, R.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Performance of an integrated microoptical system for fluorescence detection in microfluidic systems," Anal. Chem. 74, 3400-3407 (2002).
[CrossRef] [PubMed]

Weigl, B. H.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development," Adv. Drug Deliv. Rev. 55, 349-377 (2003).
[CrossRef] [PubMed]

Weston, K. D.

V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic study and evaluation of red-absorbing fluorescent dyes," Bioconjugate Chem. 14, 195-204 (2003).
[CrossRef]

Adv. Drug Deliv. Rev. (1)

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development," Adv. Drug Deliv. Rev. 55, 349-377 (2003).
[CrossRef] [PubMed]

Anal. Chem. (1)

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Performance of an integrated microoptical system for fluorescence detection in microfluidic systems," Anal. Chem. 74, 3400-3407 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. D. Summers and P. Rees, "Thermal limitation of self-pulsation in 650 nm AlGaInP laser diodes with an epitaxially integrated absorber," Appl. Phys. Lett. 71, 2665-2667 (1997).
[CrossRef]

Bioconjugate Chem. (1)

V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic study and evaluation of red-absorbing fluorescent dyes," Bioconjugate Chem. 14, 195-204 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. R. Jones, P. Rees, I. Pierce, and H. D. Summers, "Theoretical optimization of self-pulsating 650-nm-wavelength AlGaInP laser diodes," IEEE J. Sel. Top. Quantum Electron. 5, 740-744 (1999).
[CrossRef]

H. D. Summers, C. H. Molloy, P. M. Smowton, P. Rees, I. Pierce, and D. R. Jones, "Experimental analysis of self-pulsation in 650-nm-wavelength AlGaInP laser diodes with epitaxial absorbing layers," IEEE J. Sel. Top. Quantum Electron. 5, 745-749 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. D. Summers and P. Rees, "High-temperature operation of 650-nm wavelength AlGaInP self-pulsating laser diodes," IEEE Photon. Technol. Lett. 10, 1217-1219 (1998).
[CrossRef]

J. Micromech. Microeng. (1)

R. Pethig, J. P. H. Burt, A Parton, N. Rizvi, M. S. Talary, and J. A. Tame, "Development of biofactory-on-a-chip technology using excimer laser micromachining," J. Micromech. Microeng. 8, 57-63 (1998).
[CrossRef]

Phys. Rev. B (1)

I. Chung and M. G. Bawendi, "Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots," Phys. Rev. B 70, 165304 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, "Fluorescence decay time of single semiconductor nanocrystals," Phys. Rev. Lett. 88, 137401 (2002).
[CrossRef] [PubMed]

Proc. IEEE (1)

C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proc. IEEE 92, 154-173 (2004).
[CrossRef]

Other (3)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, 1999).

D. V. O'Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, 1984).

P. Alivisatos, "The use of nanocrystals in biological detection," Nature Biotechnol. 22, 47-52 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Response of a collection of fluorescent molecules to multiple-pulse excitation with pumping ratios Np of 1 × 10−4 and 0.5.

Fig. 2
Fig. 2

Global behavior of time-integrated fluorescence generated under multiple-pulse excitation. Plotted in this manner, it is the intensity of the pump that determines the degree of nonlinearity in the data.

Fig. 3
Fig. 3

Illustration of the intensity level of stroboscopic excitation necessary for a measurable frequency-driven nonlinearity to occur. Here the ratio of the time-integrated intensity generated by 1 and 0.1 GHz pulse trains plotted as a function of pumping level Np.

Fig. 4
Fig. 4

Effect of excitation pulse width (FWHM) on the time-integrated number of photons generated during stroboscopic excitation. At 300 ps the excitation pulses do not return to zero, resulting in an element of cw pumping.

Fig. 5
Fig. 5

Optical pulses obtained from a self-pulsing laser at several injection current levels.

Fig. 6
Fig. 6

Single-pulse excitation of Cy5 dissolved in water. The dashed curve shows the single Q-switched pulse generated by the laser under these operating conditions.

Fig. 7
Fig. 7

Response to multiple-pulse excitation measured with a streak camera detector for Cy5 dissolved in (a) ethanol and (b) water. It is clear that in (b) the required level of intensity-driven saturation has been reached for the frequency-driven saturation to become apparent.

Fig. 8
Fig. 8

Time-integrated fluorescence intensity obtained from a streak camera and plotted as a function of self-pulsation frequency for Cy5 dissolved in ethanol and in water.

Tables (1)

Tables Icon

Table 1 Summary of Measured Fluorescence Lifetimes of Cy5 in Water and Ethanol

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N gd = N N ex exp ( T τ ) ,
S f pulse [ N N ex exp ( T τ ) ] .
d N 1 d t = N 1 B 13 W e x + N 2 A ,
d N 2 d t = N 3 V 32 N 2 A ,
d N 3 d t = N 1 B 13 W e x N 3 V 32 .
N 1 + N 2 + N 3 = N .
N p = Number   of   excitation   photons   per   second N .

Metrics