Abstract

Motivated by a recent report by Dickey et al. [Phys. Med. Biol. 46, 2359 (2001)], who demonstrated optical property retrieval by using relative radiance measurements at a single position, we investigate the uniqueness of relative radiance measurements for quantifying the optical properties of turbid media by studying the solutions of the diffusion and P3 approximations of the Boltzmann transfer equation for a point source. Using the P3 approximation, we investigate the potential of radiance measurements for optical property recovery by examining the optical property response surface for point radiance information. We further derive first-order similarity relations for relative point radiance measurements and use these expressions to examine analytically the effects of noise on optical property retrieval over a wide range of optical properties typical of biological tissue. Finally, optimal experimental configurations are studied and explicit conditions for uniqueness derived that suggest potential strategies for improving optical property recovery. It is expected that point radiance measurements will prove valuable for both on-line treatment planning of minimally invasive laser therapies and optical characterization of tissues.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription