Abstract

A two-photon nitric oxide (NO) laser-induced fluorescence (LIF) technique was developed and applied to study in-cylinder diesel combustion. The technique prevents many problems associated with in-cylinder, single-photon NO planar-laser-induced fluorescence measurements, including fluorescence interference from the Schumann–Runge bands of hot O2, absorption of a UV excitation beam by in-cylinder gases, and difficulty in rejecting scattered laser light while simultaneously attempting to maximize fluorescence signal collection. Verification that the signal resulted from NO was provided by tuning of the laser to a vibrational off-resonance wavelength that showed near-zero signal levels, which resulted from either fluorescence or interference at in-cylinder pressures of as much as 20 bar. The two-photon NO LIF signal showed good qualitative agreement with NO exhaust-gas measurements obtained over a wide range of engine loads.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription