Abstract

We present what is to our knowledge the first use of light-emitting diodes (LEDs) as light sources for long-path differential optical absorption spectroscopy (LP-DOAS) measurements of trace gases in the open atmosphere. Modern LEDs represent a potentially advantageous alternative to thermal light sources, in particular to xenon arc lamps, which are the most common active DOAS light sources. The radiative properties of a variety of LEDs were characterized, and parameters such as spectral shape, spectral range, spectral stability, and ways in which they can be influenced by environmental factors were analyzed. The spectra of several LEDs were found to contain Fabry–Perot etalon-induced spectral structures that interfered with the DOAS evaluation, in particular when a constant temperature was not maintained. It was shown that LEDs can be used successfully as light sources in active DOAS experiments that measure NO2 and NO3 near 450 and 630   nm, respectively. Average detection limits of 0 .3   parts in 109 and 16 parts in 1012 respectively, were obtained by use of a 6 km light path in the open atmosphere.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Perner, D. H. Ehhalt, H. W. Pätz, U. Platt, E. P. Röth, and A. Volz, "OH-radicals in the lower troposphere," Geophys. Res. Lett. 3, 466-468 (1976).
    [CrossRef]
  2. D. Perner and U. Platt, "Detection of nitrous acid by differential optical absorption," Geophys. Res. Lett. 6, 917-920 (1979).
    [CrossRef]
  3. U. Platt, D. Perner, and H. W. Pätz, "Simultaneous measurements of atmospheric CH2O, O3, and NO2 by differential optical absorption," J. Geosphys. Res. 84, 6329-6335 (1979).
    [CrossRef]
  4. U. Platt, "Differential optical absorption spectroscopy (DOAS)," in Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27-84.
  5. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy--Principles and Applications (Springer-Verlag, 2005).
  6. J. Stutz and U. Platt, "Numerical analysis and error estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods," Appl. Opt. 35, 6041-6053 (1996).
    [CrossRef] [PubMed]
  7. Technical Information XBO 450 W/2 OFR, No. FO 4962, Edition 07/00 (Osram, 2000).
  8. Technical Information XBO 50 W/XE, No. FO 4732, Edition 02/02 (Osram, 2002).
  9. U. Platt, D. Perner, J. Schröder, C. Kessler, and A. Toennissen, "The diurnal variation of NO3," J. Geosphys. Res. 86doi: 10.1029(1981).
  10. S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorptions spectroscopy using light-emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
    [CrossRef]
  11. E. F. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2003).
  12. T. Hermes, "Light sources and optics for differential optical absorption spectroscopy," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 1999).
  13. J. Stutz, "Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller-Optischer-Absorptionsspektroskopie: Eine neue Generation von Geräten und Algorithmen," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 1996).
  14. C. Kern, "Applicability of light-emitting diodes as light sources for active long path DOAS measurements: a feasibility study," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).
  15. Luxeon III Star Power Light Source, Technical Datasheet DS46 (Luxeon,2004); http://www.lumileds.com/pdfs/DS46.pdf.
  16. LOT-Oriel-Group, Quartz Tungsten Lamps & Spectral Irradiance Data, Europe (2005).
  17. Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties, Vol. 7 of Thermophysical Properties of Matter, (IFI/Plenum, 1970).
  18. E. Hecht, Optics (Addison Wesley, 2001).
  19. D. D. Manchon, A. S. Barker, J. P. Dean, and R. B. Zetterstrom, "Optical studies of the phonons and electrons in gallium nitride," Solid State Commun. 8, 1227-1231 (1970).
    [CrossRef]
  20. E. Ejder, "Refractive Index of GaN," Phys. Status Solidi A 6, 445-448 (1971).
    [CrossRef]
  21. V. A. Savastenko and A. U. Sheleg, "Study of the elastic properties of gallium nitride," Phys. Status Solidi A 48, K135-K139 (1978).
    [CrossRef]
  22. S. Kraus, "DOASIS: DOAS Intelligent System," Institute of Environmental Physics, University of Heidelberg, in cooperation with Hoffmann Messtechnik GmbH, Heidelberg (2004), http://www.iup.uni-heidelberg.de/bugtracker/projects/doasis/.
  23. W. Schneider, G. Tyndall, J. Burrows, and G. K. Moortgat, "Absorption cross-sections of NO2 in the UV and visible region (200-700 nm) at 298 K," J. Photochem. Photobiol. 40, 195-217 (1987).
    [CrossRef]
  24. P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
    [CrossRef]
  25. A. R. Ravishankara and P. H. Wine, "Absorption cross sections for NO3 between 565 and 673 nm," Chem. Phys. Lett. 101, 73-78 (1983).
    [CrossRef]
  26. S. P. Sander, "Temperature dependence of the NO3 absorption spectrum," J. Phys. Chem. 90, 4135-4142 (1986).
    [CrossRef]
  27. A. Geyer, "The role of the nitrate radical in the boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2000).
  28. K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Q. Appl. Math. 2, 164-168 (1944).
  29. D. W. Marquardt, "An algorithm for least squares estimation of non-linear parameters," J. Soc. Indust. Appl. Math. 11, 431-441 (1963).
    [CrossRef]
  30. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipies in C (Cambridge U. Press, 1986).
  31. H. Veitel, "Vertical profiles of NO2 and HONO in the boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2002).
  32. B. Rippel, "Vorarbeiten zu tomographischen Langeit-Spurenstoffmessungen in Heidelberg," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 2005).
  33. A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
    [CrossRef]
  34. S. Trick, "Formation of nitrous acid on urban surfaces: a physical-chemical perspective," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).
  35. O. S. Mueller de Vries, "The relative contribution of free radicals to the oxidation chain of dimethylsulphide in the marine boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).
  36. V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
    [CrossRef]
  37. J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
    [CrossRef]
  38. J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
    [CrossRef]
  39. A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini, and S. Nakamura, "292 nm AlGaN single-quantum well light emitting diodes grown on a transparent AIN base," Jpn. J. Appl. Phys. 2 , 42, 628-630 (2003).
    [CrossRef]
  40. A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
    [CrossRef]
  41. G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003).
    [CrossRef]

2004 (2)

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorptions spectroscopy using light-emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

2003 (5)

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
[CrossRef]

A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini, and S. Nakamura, "292 nm AlGaN single-quantum well light emitting diodes grown on a transparent AIN base," Jpn. J. Appl. Phys. 2 , 42, 628-630 (2003).
[CrossRef]

A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
[CrossRef]

G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003).
[CrossRef]

2002 (2)

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

1996 (1)

1987 (1)

W. Schneider, G. Tyndall, J. Burrows, and G. K. Moortgat, "Absorption cross-sections of NO2 in the UV and visible region (200-700 nm) at 298 K," J. Photochem. Photobiol. 40, 195-217 (1987).
[CrossRef]

1986 (1)

S. P. Sander, "Temperature dependence of the NO3 absorption spectrum," J. Phys. Chem. 90, 4135-4142 (1986).
[CrossRef]

1983 (1)

A. R. Ravishankara and P. H. Wine, "Absorption cross sections for NO3 between 565 and 673 nm," Chem. Phys. Lett. 101, 73-78 (1983).
[CrossRef]

1981 (1)

U. Platt, D. Perner, J. Schröder, C. Kessler, and A. Toennissen, "The diurnal variation of NO3," J. Geosphys. Res. 86doi: 10.1029(1981).

1979 (2)

D. Perner and U. Platt, "Detection of nitrous acid by differential optical absorption," Geophys. Res. Lett. 6, 917-920 (1979).
[CrossRef]

U. Platt, D. Perner, and H. W. Pätz, "Simultaneous measurements of atmospheric CH2O, O3, and NO2 by differential optical absorption," J. Geosphys. Res. 84, 6329-6335 (1979).
[CrossRef]

1978 (1)

V. A. Savastenko and A. U. Sheleg, "Study of the elastic properties of gallium nitride," Phys. Status Solidi A 48, K135-K139 (1978).
[CrossRef]

1976 (1)

D. Perner, D. H. Ehhalt, H. W. Pätz, U. Platt, E. P. Röth, and A. Volz, "OH-radicals in the lower troposphere," Geophys. Res. Lett. 3, 466-468 (1976).
[CrossRef]

1971 (1)

E. Ejder, "Refractive Index of GaN," Phys. Status Solidi A 6, 445-448 (1971).
[CrossRef]

1970 (1)

D. D. Manchon, A. S. Barker, J. P. Dean, and R. B. Zetterstrom, "Optical studies of the phonons and electrons in gallium nitride," Solid State Commun. 8, 1227-1231 (1970).
[CrossRef]

1963 (1)

D. W. Marquardt, "An algorithm for least squares estimation of non-linear parameters," J. Soc. Indust. Appl. Math. 11, 431-441 (1963).
[CrossRef]

1944 (1)

K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Q. Appl. Math. 2, 164-168 (1944).

Ackermann, R.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

Adivarahan, V.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
[CrossRef]

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

Alicke, B.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

Asif Khan, M.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
[CrossRef]

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

Ball, S. M.

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorptions spectroscopy using light-emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

Barker, A. S.

D. D. Manchon, A. S. Barker, J. P. Dean, and R. B. Zetterstrom, "Optical studies of the phonons and electrons in gallium nitride," Solid State Commun. 8, 1227-1231 (1970).
[CrossRef]

Borisov, B.

G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003).
[CrossRef]

Brune, W.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

Burrows, J.

W. Schneider, G. Tyndall, J. Burrows, and G. K. Moortgat, "Absorption cross-sections of NO2 in the UV and visible region (200-700 nm) at 298 K," J. Photochem. Photobiol. 40, 195-217 (1987).
[CrossRef]

Carleer, M.

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

Chitnis, A.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
[CrossRef]

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

Clerbaux, C.

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

Coheur, P.-F.

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

Colin, R.

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

Darvish, S. R.

A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
[CrossRef]

Dean, J. P.

D. D. Manchon, A. S. Barker, J. P. Dean, and R. B. Zetterstrom, "Optical studies of the phonons and electrons in gallium nitride," Solid State Commun. 8, 1227-1231 (1970).
[CrossRef]

DeWitt, D. P.

Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties, Vol. 7 of Thermophysical Properties of Matter, (IFI/Plenum, 1970).

di Carlo, P.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

Ehhalt, D. H.

D. Perner, D. H. Ehhalt, H. W. Pätz, U. Platt, E. P. Röth, and A. Volz, "OH-radicals in the lower troposphere," Geophys. Res. Lett. 3, 466-468 (1976).
[CrossRef]

Ejder, E.

E. Ejder, "Refractive Index of GaN," Phys. Status Solidi A 6, 445-448 (1971).
[CrossRef]

Fally, S.

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

Fini, P.

A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini, and S. Nakamura, "292 nm AlGaN single-quantum well light emitting diodes grown on a transparent AIN base," Jpn. J. Appl. Phys. 2 , 42, 628-630 (2003).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipies in C (Cambridge U. Press, 1986).

Gautero, L.

A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
[CrossRef]

Geyer, A.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

A. Geyer, "The role of the nitrate radical in the boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2000).

Hall, S.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

Hanlon, A.

A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini, and S. Nakamura, "292 nm AlGaN single-quantum well light emitting diodes grown on a transparent AIN base," Jpn. J. Appl. Phys. 2 , 42, 628-630 (2003).
[CrossRef]

Harder, H.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 2001).

Hermans, C.

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

Hermes, T.

T. Hermes, "Light sources and optics for differential optical absorption spectroscopy," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 1999).

Holtz, M.

G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003).
[CrossRef]

Jenouvrier, A.

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

Jobson, T.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

Jones, R. L.

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorptions spectroscopy using light-emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

Kaeding, J. F.

A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini, and S. Nakamura, "292 nm AlGaN single-quantum well light emitting diodes grown on a transparent AIN base," Jpn. J. Appl. Phys. 2 , 42, 628-630 (2003).
[CrossRef]

Kern, C.

C. Kern, "Applicability of light-emitting diodes as light sources for active long path DOAS measurements: a feasibility study," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).

Kessler, C.

U. Platt, D. Perner, J. Schröder, C. Kessler, and A. Toennissen, "The diurnal variation of NO3," J. Geosphys. Res. 86doi: 10.1029(1981).

Kipshidze, G.

G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003).
[CrossRef]

Kraus, S.

S. Kraus, "DOASIS: DOAS Intelligent System," Institute of Environmental Physics, University of Heidelberg, in cooperation with Hoffmann Messtechnik GmbH, Heidelberg (2004), http://www.iup.uni-heidelberg.de/bugtracker/projects/doasis/.

Kung, P.

A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
[CrossRef]

Kuryatkov, V.

G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003).
[CrossRef]

Langridge, J. M.

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorptions spectroscopy using light-emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

Levenberg, K.

K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Q. Appl. Math. 2, 164-168 (1944).

Manchon, D. D.

D. D. Manchon, A. S. Barker, J. P. Dean, and R. B. Zetterstrom, "Optical studies of the phonons and electrons in gallium nitride," Solid State Commun. 8, 1227-1231 (1970).
[CrossRef]

Mandavilli, V.

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

Mandeavilli, V.

J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
[CrossRef]

Marquardt, D. W.

D. W. Marquardt, "An algorithm for least squares estimation of non-linear parameters," J. Soc. Indust. Appl. Math. 11, 431-441 (1963).
[CrossRef]

Martinez, M.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

Maruska, H. P.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

Mayes, K.

A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
[CrossRef]

McClintock, R.

A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
[CrossRef]

Merienne, M.-F.

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

Moortgat, G. K.

W. Schneider, G. Tyndall, J. Burrows, and G. K. Moortgat, "Absorption cross-sections of NO2 in the UV and visible region (200-700 nm) at 298 K," J. Photochem. Photobiol. 40, 195-217 (1987).
[CrossRef]

Mueller de Vries, O. S.

O. S. Mueller de Vries, "The relative contribution of free radicals to the oxidation chain of dimethylsulphide in the marine boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).

Nakamura, S.

A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini, and S. Nakamura, "292 nm AlGaN single-quantum well light emitting diodes grown on a transparent AIN base," Jpn. J. Appl. Phys. 2 , 42, 628-630 (2003).
[CrossRef]

Nikishin, S.

G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003).
[CrossRef]

Pachipulusu, R.

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

Pattison, P. M.

A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini, and S. Nakamura, "292 nm AlGaN single-quantum well light emitting diodes grown on a transparent AIN base," Jpn. J. Appl. Phys. 2 , 42, 628-630 (2003).
[CrossRef]

Pätz, H. W.

U. Platt, D. Perner, and H. W. Pätz, "Simultaneous measurements of atmospheric CH2O, O3, and NO2 by differential optical absorption," J. Geosphys. Res. 84, 6329-6335 (1979).
[CrossRef]

D. Perner, D. H. Ehhalt, H. W. Pätz, U. Platt, E. P. Röth, and A. Volz, "OH-radicals in the lower troposphere," Geophys. Res. Lett. 3, 466-468 (1976).
[CrossRef]

Perner, D.

U. Platt, D. Perner, J. Schröder, C. Kessler, and A. Toennissen, "The diurnal variation of NO3," J. Geosphys. Res. 86doi: 10.1029(1981).

U. Platt, D. Perner, and H. W. Pätz, "Simultaneous measurements of atmospheric CH2O, O3, and NO2 by differential optical absorption," J. Geosphys. Res. 84, 6329-6335 (1979).
[CrossRef]

D. Perner and U. Platt, "Detection of nitrous acid by differential optical absorption," Geophys. Res. Lett. 6, 917-920 (1979).
[CrossRef]

D. Perner, D. H. Ehhalt, H. W. Pätz, U. Platt, E. P. Röth, and A. Volz, "OH-radicals in the lower troposphere," Geophys. Res. Lett. 3, 466-468 (1976).
[CrossRef]

Platt, U.

J. Stutz and U. Platt, "Numerical analysis and error estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods," Appl. Opt. 35, 6041-6053 (1996).
[CrossRef] [PubMed]

U. Platt, D. Perner, J. Schröder, C. Kessler, and A. Toennissen, "The diurnal variation of NO3," J. Geosphys. Res. 86doi: 10.1029(1981).

U. Platt, D. Perner, and H. W. Pätz, "Simultaneous measurements of atmospheric CH2O, O3, and NO2 by differential optical absorption," J. Geosphys. Res. 84, 6329-6335 (1979).
[CrossRef]

D. Perner and U. Platt, "Detection of nitrous acid by differential optical absorption," Geophys. Res. Lett. 6, 917-920 (1979).
[CrossRef]

D. Perner, D. H. Ehhalt, H. W. Pätz, U. Platt, E. P. Röth, and A. Volz, "OH-radicals in the lower troposphere," Geophys. Res. Lett. 3, 466-468 (1976).
[CrossRef]

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy--Principles and Applications (Springer-Verlag, 2005).

U. Platt, "Differential optical absorption spectroscopy (DOAS)," in Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27-84.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipies in C (Cambridge U. Press, 1986).

Rai, S.

J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
[CrossRef]

Ravishankara, A. R.

A. R. Ravishankara and P. H. Wine, "Absorption cross sections for NO3 between 565 and 673 nm," Chem. Phys. Lett. 101, 73-78 (1983).
[CrossRef]

Razeghi, M.

A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
[CrossRef]

Rippel, B.

B. Rippel, "Vorarbeiten zu tomographischen Langeit-Spurenstoffmessungen in Heidelberg," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 2005).

Röth, E. P.

D. Perner, D. H. Ehhalt, H. W. Pätz, U. Platt, E. P. Röth, and A. Volz, "OH-radicals in the lower troposphere," Geophys. Res. Lett. 3, 466-468 (1976).
[CrossRef]

Sander, S. P.

S. P. Sander, "Temperature dependence of the NO3 absorption spectrum," J. Phys. Chem. 90, 4135-4142 (1986).
[CrossRef]

Savastenko, V. A.

V. A. Savastenko and A. U. Sheleg, "Study of the elastic properties of gallium nitride," Phys. Status Solidi A 48, K135-K139 (1978).
[CrossRef]

Schneider, W.

W. Schneider, G. Tyndall, J. Burrows, and G. K. Moortgat, "Absorption cross-sections of NO2 in the UV and visible region (200-700 nm) at 298 K," J. Photochem. Photobiol. 40, 195-217 (1987).
[CrossRef]

Schröder, J.

U. Platt, D. Perner, J. Schröder, C. Kessler, and A. Toennissen, "The diurnal variation of NO3," J. Geosphys. Res. 86doi: 10.1029(1981).

Schubert, E. F.

E. F. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2003).

Sharma, R.

A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini, and S. Nakamura, "292 nm AlGaN single-quantum well light emitting diodes grown on a transparent AIN base," Jpn. J. Appl. Phys. 2 , 42, 628-630 (2003).
[CrossRef]

Shatalov, M.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
[CrossRef]

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

Sheleg, A. U.

V. A. Savastenko and A. U. Sheleg, "Study of the elastic properties of gallium nitride," Phys. Status Solidi A 48, K135-K139 (1978).
[CrossRef]

Shetter, R.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

Shiell, D.

A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
[CrossRef]

Simin, G.

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

Stutz, J.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

J. Stutz and U. Platt, "Numerical analysis and error estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods," Appl. Opt. 35, 6041-6053 (1996).
[CrossRef] [PubMed]

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy--Principles and Applications (Springer-Verlag, 2005).

J. Stutz, "Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller-Optischer-Absorptionsspektroskopie: Eine neue Generation von Geräten und Algorithmen," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 1996).

Sun, W. H.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

Temkin, H.

G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipies in C (Cambridge U. Press, 1986).

Toennissen, A.

U. Platt, D. Perner, J. Schröder, C. Kessler, and A. Toennissen, "The diurnal variation of NO3," J. Geosphys. Res. 86doi: 10.1029(1981).

Touloukian, Y. S.

Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties, Vol. 7 of Thermophysical Properties of Matter, (IFI/Plenum, 1970).

Trick, S.

S. Trick, "Formation of nitrous acid on urban surfaces: a physical-chemical perspective," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).

Tyndall, G.

W. Schneider, G. Tyndall, J. Burrows, and G. K. Moortgat, "Absorption cross-sections of NO2 in the UV and visible region (200-700 nm) at 298 K," J. Photochem. Photobiol. 40, 195-217 (1987).
[CrossRef]

Vandaele, A. C.

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

Veitel, H.

H. Veitel, "Vertical profiles of NO2 and HONO in the boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2002).

Vettering, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipies in C (Cambridge U. Press, 1986).

Volz, A.

D. Perner, D. H. Ehhalt, H. W. Pätz, U. Platt, E. P. Röth, and A. Volz, "OH-radicals in the lower troposphere," Geophys. Res. Lett. 3, 466-468 (1976).
[CrossRef]

Williams, E.

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

Wine, P. H.

A. R. Ravishankara and P. H. Wine, "Absorption cross sections for NO3 between 565 and 673 nm," Chem. Phys. Lett. 101, 73-78 (1983).
[CrossRef]

Wu, S.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
[CrossRef]

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

Yang, J. W.

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

Yasan, A.

A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
[CrossRef]

Zetterstrom, R. B.

D. D. Manchon, A. S. Barker, J. P. Dean, and R. B. Zetterstrom, "Optical studies of the phonons and electrons in gallium nitride," Solid State Commun. 8, 1227-1231 (1970).
[CrossRef]

Zhang, J. P.

J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
[CrossRef]

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

Zhu, K.

G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003).
[CrossRef]

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002).
[CrossRef]

J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003).
[CrossRef]

Chem. Phys. Lett. (2)

A. R. Ravishankara and P. H. Wine, "Absorption cross sections for NO3 between 565 and 673 nm," Chem. Phys. Lett. 101, 73-78 (1983).
[CrossRef]

S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorptions spectroscopy using light-emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

Geophys. Res. Lett. (2)

D. Perner, D. H. Ehhalt, H. W. Pätz, U. Platt, E. P. Röth, and A. Volz, "OH-radicals in the lower troposphere," Geophys. Res. Lett. 3, 466-468 (1976).
[CrossRef]

D. Perner and U. Platt, "Detection of nitrous acid by differential optical absorption," Geophys. Res. Lett. 6, 917-920 (1979).
[CrossRef]

J. Appl. Phys. (1)

G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003).
[CrossRef]

J. Geosphys. Res. (3)

U. Platt, D. Perner, and H. W. Pätz, "Simultaneous measurements of atmospheric CH2O, O3, and NO2 by differential optical absorption," J. Geosphys. Res. 84, 6329-6335 (1979).
[CrossRef]

A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003).
[CrossRef]

U. Platt, D. Perner, J. Schröder, C. Kessler, and A. Toennissen, "The diurnal variation of NO3," J. Geosphys. Res. 86doi: 10.1029(1981).

J. Photochem. Photobiol. (1)

W. Schneider, G. Tyndall, J. Burrows, and G. K. Moortgat, "Absorption cross-sections of NO2 in the UV and visible region (200-700 nm) at 298 K," J. Photochem. Photobiol. 40, 195-217 (1987).
[CrossRef]

J. Phys. Chem. (1)

S. P. Sander, "Temperature dependence of the NO3 absorption spectrum," J. Phys. Chem. 90, 4135-4142 (1986).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002).
[CrossRef]

J. Soc. Indust. Appl. Math. (1)

D. W. Marquardt, "An algorithm for least squares estimation of non-linear parameters," J. Soc. Indust. Appl. Math. 11, 431-441 (1963).
[CrossRef]

Jpn. J. Appl. Phys. 2 (1)

A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini, and S. Nakamura, "292 nm AlGaN single-quantum well light emitting diodes grown on a transparent AIN base," Jpn. J. Appl. Phys. 2 , 42, 628-630 (2003).
[CrossRef]

Phys. Status Solidi A (2)

E. Ejder, "Refractive Index of GaN," Phys. Status Solidi A 6, 445-448 (1971).
[CrossRef]

V. A. Savastenko and A. U. Sheleg, "Study of the elastic properties of gallium nitride," Phys. Status Solidi A 48, K135-K139 (1978).
[CrossRef]

Q. Appl. Math. (1)

K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Q. Appl. Math. 2, 164-168 (1944).

Solid State Commun. (1)

D. D. Manchon, A. S. Barker, J. P. Dean, and R. B. Zetterstrom, "Optical studies of the phonons and electrons in gallium nitride," Solid State Commun. 8, 1227-1231 (1970).
[CrossRef]

Other (19)

Technical Information XBO 450 W/2 OFR, No. FO 4962, Edition 07/00 (Osram, 2000).

Technical Information XBO 50 W/XE, No. FO 4732, Edition 02/02 (Osram, 2002).

S. Kraus, "DOASIS: DOAS Intelligent System," Institute of Environmental Physics, University of Heidelberg, in cooperation with Hoffmann Messtechnik GmbH, Heidelberg (2004), http://www.iup.uni-heidelberg.de/bugtracker/projects/doasis/.

E. F. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2003).

T. Hermes, "Light sources and optics for differential optical absorption spectroscopy," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 1999).

J. Stutz, "Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller-Optischer-Absorptionsspektroskopie: Eine neue Generation von Geräten und Algorithmen," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 1996).

C. Kern, "Applicability of light-emitting diodes as light sources for active long path DOAS measurements: a feasibility study," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).

Luxeon III Star Power Light Source, Technical Datasheet DS46 (Luxeon,2004); http://www.lumileds.com/pdfs/DS46.pdf.

LOT-Oriel-Group, Quartz Tungsten Lamps & Spectral Irradiance Data, Europe (2005).

Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties, Vol. 7 of Thermophysical Properties of Matter, (IFI/Plenum, 1970).

E. Hecht, Optics (Addison Wesley, 2001).

U. Platt, "Differential optical absorption spectroscopy (DOAS)," in Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27-84.

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy--Principles and Applications (Springer-Verlag, 2005).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipies in C (Cambridge U. Press, 1986).

H. Veitel, "Vertical profiles of NO2 and HONO in the boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2002).

B. Rippel, "Vorarbeiten zu tomographischen Langeit-Spurenstoffmessungen in Heidelberg," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 2005).

A. Geyer, "The role of the nitrate radical in the boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2000).

S. Trick, "Formation of nitrous acid on urban surfaces: a physical-chemical perspective," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).

O. S. Mueller de Vries, "The relative contribution of free radicals to the oxidation chain of dimethylsulphide in the marine boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Estimated spectral radiance distribution of an Osram 450 W∕2 XBO xenon arc lamp, a Luxeon LXHL-LR3C high-power 3 W royal blue LED, and a conventional tungsten halogen lamp (20 W). Note that the halogen lamp's spectrum is multiplied by 10 in this figure. (b) Spectral radiance normalized to the electrical input power of the individual sources.

Fig. 2
Fig. 2

Spectral radiance of various LEDs analyzed in this study. Also see Table 1.

Fig. 3
Fig. 3

Schematic of the active long-path DOAS instrument used in this study (adapted from Ref. 13).

Fig. 4
Fig. 4

Spectra of the ELD-670-524 red LED taken at different positions on the chip. Positions 1–6 were recorded in this order while the spectrometer was moving across the chip from one side to the other.

Fig. 5
Fig. 5

Spectrum of the LXHL-LR3C diode. The center three etalon-induced peaks are labeled peaks 1–3. The dotted curve represents the spectrum after a binomial low-pass filter was applied, and its peak is designated Peak BLP.

Fig. 6
Fig. 6

Exemplary result of the DOAS evaluation for NO2 in the 433–458 nm wavelength range. Here a NO2 concentration of (9.7 ± 0.1) × 1010 molecules∕cm3 was found. (a) The fit result shows the sum of the fit references and the measured optical density (almost perfectly covered). (c)–(f) Individual fit references (black) and sums of fit reference and residual (barely visible at times). The calculated value for the fit coefficient is displayed above each reference. The third-order polynomial calculated by the fit routine to remove any broadband structures is not shown.

Fig. 7
Fig. 7

Correlation of the NO2 concentrations measured with the LED–DOAS and the XBO–DOAS systems.

Fig. 8
Fig. 8

Example result of the NO3 DOAS evaluation. In this case a NO3 concentration of (4.3 ± 0.04) × 109 molecules∕cm3 was found. (a) The fit result shows the sum of the fit references and the measured optical density (almost perfectly covered). (c) Fit of one of the Day Ref spectra; (d) the NO3 fit. The calculated value for the fit coefficient is displayed above each reference. In addition to the two references depicted here, two further Day Ref spectra, H2O and O2 absorption cross sections, and a third-order polynomial were included.

Fig. 9
Fig. 9

NO3 time series for the nights of 7–9 June 2004. The large tick marks refer to 12:00 pm of the indicated day.

Tables (2)

Tables Icon

Table 1 Overview of Tested LEDs and Their Peak Wavelengths, Drive Currents, and Power Dissipation According To the Manufacturers' Data Sheets a

Tables Icon

Table 2 Summary of Recent LP-DOAS Measurements of NO2 and NO3

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( λ , L ) = I 0 ( λ ) exp [ i σ i 0 L c i ( l ) d l ] .
S = 0 L c i ( l ) d l .
c ¯ = S L = τ σ L .
B = η P el A Ω = Φ phot V ( λ ) A Ω .
Ω rel π 4 d 2 / 4 π f 2 = 1 16 ( d f ) 2 .
J = P rad 2 π 0 π / 2 cos 2 ( ϑ ) sin ( ϑ ) d ϑ = 3 2 π P rad .
λ N = 2 d n 2 N ( 1 n 1     2 n 2     2 sin 2 γ ) 1 / 2 ,

Metrics