Abstract

The numerical modeling of actively Q-switched fiber lasers is systematically presented. On the basis of typical Q-switched ytterbium-doped double-clad fiber lasers under forward and backward pump, the dynamic characteristics of pulse energy, pulse width, population inversion, and stored energy at tens-of-kilohertz repetition rates are studied by using the traveling-wave method. The laser performance is further investigated for different fiber core diameters, doping rates, cavity lengths, fiber losses, signal and pump wavelengths, reflectivities of output coupler, and switching speed of an acousto-optic modulator; the laser optimization is also quantitatively discussed. Some simulation results are also compared with previous experimental results.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription