Abstract

We present recent improvements in accuracy to the fast transmittance-calculation procedure, Optical Path Transmittance (OPTRAN), which is used for satellite data assimilation at the National Oceanic and Atmospheric Administration. These improvements are (1) to change the absorber space used for ozone, (2) to add new predictors for each gas, and (3) to treat the water vapor line absorption and water continuum absorption as separate terms. Significant improvements in the accuracy of the OPTRAN algorithm for High-Resolution Infrared Radiation Sounders (HIRS) and the Atmospheric Infrared Sounder (AIRS) are demonstrated. The results that we show here extend a recent paper of Xiong and McMillin (2004) that describes the use of a polychromatic correction term to replace the effective transmittance concept to include additional changes that improve accuracy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. McMillin, L. J. Crone, M. D. Goldberg, and T. J. Kleespies, "Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and variable mixing ratios at variable viewing angles," Appl. Opt. 34, 6269-6274 (1995).
    [CrossRef] [PubMed]
  2. L. M. McMillin, L. J. Crone, and T. J. Kleespies, "Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach," Appl. Opt. 34, 8396-8399 (1995).
    [CrossRef] [PubMed]
  3. L. M. McMillin and H. E. Fleming, "Atmospheric transmittance of an absorbing gas: a computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres," Appl. Opt. 15, 358-363 (1976).
    [CrossRef] [PubMed]
  4. J. Derber, "The use of radiance data in the NCEP global and regional data assimilation systems," in Proceedings of the Twelfth International TOVS Study Conference, 2002 (Available from J. Le Marshall, JCSDA, World Weather Building, 5200 Auth Road, Camp Springs, Maryland 20746).
  5. R. M. Saunders, M. Matricardi, and P. Brunel, "An improved fast radiative transfer model for assimilation of satellite radiance observation," Q. J. R. Meteorol. Soc. 125, 1407-1425 (1999).
    [CrossRef]
  6. M. Matricardi and R. M. Saunders, "Fast radiative transfer model for assimilation of infrared atmospheric sounding interferometer radiances," Appl. Opt. 38, 5679-5691 (1999).
    [CrossRef]
  7. J. R. Eyre, "A fast radiative transfer model for satellite sounding systems," ECMWF Research Dept. Tech. Memo. 176 (European Center for Medium Range Weather Forecasts, 1991).
  8. S. Hannon, L. Strow, and W. McMillan, "Atmospheric infrared fast transmittance models: a comparison of two approaches," in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays and J. Wang, eds., Proc. SPIE 2830, 94-105 (1996).
    [CrossRef]
  9. L. L. Strow, S. E. Hannon, S. De Souza-Machado, H. E. Mottler, and D. Tobin, "An overview of the AIRS radiative transfer model," IEEE Trans. Geosci. Remote Sens. 41, 303-313 (2003).
    [CrossRef]
  10. S. A. Clough, M. J. Iacono, and J. L. Moncet, "Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor" J. Geophys. Res. 97, 15,761-15,785 (1992).
  11. T. J. Kleespies, P. V. Delst, L. M. McMillin, and J. Derber, "Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model," Appl. Opt. 43, 3103-3109 (2004).
    [CrossRef] [PubMed]
  12. F. Chevallier, "TIGR-like sampled databases of atmospheric profiles from the ECMWF 50-level forecast model," ECMWF/Eumetsat NWP SAF Res. Rep. 1 (European Center for Medium Range Weather Forecasts, 1999).
  13. X. Xiong and L. M. McMillin, "An alternative to the effective transmittance approach for calculating polychromatic transmittances in rapid transmittance models," Appl. Opt. 44, 67-76 (2005).
    [PubMed]
  14. Y. Tahara, Y. Han, P. F. W. van Delst, J. C. Derber, L. M. McMillin, X. Xiong, and T. J. Kleespies, "Development of a compact version of OPTRAN for use with high spectral resolution instruments in NWP," to be submitted to Appl. Opt.

2005

2004

2003

L. L. Strow, S. E. Hannon, S. De Souza-Machado, H. E. Mottler, and D. Tobin, "An overview of the AIRS radiative transfer model," IEEE Trans. Geosci. Remote Sens. 41, 303-313 (2003).
[CrossRef]

1999

R. M. Saunders, M. Matricardi, and P. Brunel, "An improved fast radiative transfer model for assimilation of satellite radiance observation," Q. J. R. Meteorol. Soc. 125, 1407-1425 (1999).
[CrossRef]

M. Matricardi and R. M. Saunders, "Fast radiative transfer model for assimilation of infrared atmospheric sounding interferometer radiances," Appl. Opt. 38, 5679-5691 (1999).
[CrossRef]

1996

S. Hannon, L. Strow, and W. McMillan, "Atmospheric infrared fast transmittance models: a comparison of two approaches," in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays and J. Wang, eds., Proc. SPIE 2830, 94-105 (1996).
[CrossRef]

1995

1992

S. A. Clough, M. J. Iacono, and J. L. Moncet, "Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor" J. Geophys. Res. 97, 15,761-15,785 (1992).

1976

Brunel, P.

R. M. Saunders, M. Matricardi, and P. Brunel, "An improved fast radiative transfer model for assimilation of satellite radiance observation," Q. J. R. Meteorol. Soc. 125, 1407-1425 (1999).
[CrossRef]

Chevallier, F.

F. Chevallier, "TIGR-like sampled databases of atmospheric profiles from the ECMWF 50-level forecast model," ECMWF/Eumetsat NWP SAF Res. Rep. 1 (European Center for Medium Range Weather Forecasts, 1999).

Clough, S. A.

S. A. Clough, M. J. Iacono, and J. L. Moncet, "Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor" J. Geophys. Res. 97, 15,761-15,785 (1992).

Crone, L. J.

Delst, P. V.

Derber, J.

T. J. Kleespies, P. V. Delst, L. M. McMillin, and J. Derber, "Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model," Appl. Opt. 43, 3103-3109 (2004).
[CrossRef] [PubMed]

J. Derber, "The use of radiance data in the NCEP global and regional data assimilation systems," in Proceedings of the Twelfth International TOVS Study Conference, 2002 (Available from J. Le Marshall, JCSDA, World Weather Building, 5200 Auth Road, Camp Springs, Maryland 20746).

Derber, J. C.

Y. Tahara, Y. Han, P. F. W. van Delst, J. C. Derber, L. M. McMillin, X. Xiong, and T. J. Kleespies, "Development of a compact version of OPTRAN for use with high spectral resolution instruments in NWP," to be submitted to Appl. Opt.

Eyre, J. R.

J. R. Eyre, "A fast radiative transfer model for satellite sounding systems," ECMWF Research Dept. Tech. Memo. 176 (European Center for Medium Range Weather Forecasts, 1991).

Fleming, H. E.

Goldberg, M. D.

Han, Y.

Y. Tahara, Y. Han, P. F. W. van Delst, J. C. Derber, L. M. McMillin, X. Xiong, and T. J. Kleespies, "Development of a compact version of OPTRAN for use with high spectral resolution instruments in NWP," to be submitted to Appl. Opt.

Hannon, S.

S. Hannon, L. Strow, and W. McMillan, "Atmospheric infrared fast transmittance models: a comparison of two approaches," in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays and J. Wang, eds., Proc. SPIE 2830, 94-105 (1996).
[CrossRef]

Hannon, S. E.

L. L. Strow, S. E. Hannon, S. De Souza-Machado, H. E. Mottler, and D. Tobin, "An overview of the AIRS radiative transfer model," IEEE Trans. Geosci. Remote Sens. 41, 303-313 (2003).
[CrossRef]

Iacono, M. J.

S. A. Clough, M. J. Iacono, and J. L. Moncet, "Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor" J. Geophys. Res. 97, 15,761-15,785 (1992).

Kleespies, T. J.

Matricardi, M.

M. Matricardi and R. M. Saunders, "Fast radiative transfer model for assimilation of infrared atmospheric sounding interferometer radiances," Appl. Opt. 38, 5679-5691 (1999).
[CrossRef]

R. M. Saunders, M. Matricardi, and P. Brunel, "An improved fast radiative transfer model for assimilation of satellite radiance observation," Q. J. R. Meteorol. Soc. 125, 1407-1425 (1999).
[CrossRef]

McMillan, W.

S. Hannon, L. Strow, and W. McMillan, "Atmospheric infrared fast transmittance models: a comparison of two approaches," in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays and J. Wang, eds., Proc. SPIE 2830, 94-105 (1996).
[CrossRef]

McMillin, L. M.

Moncet, J. L.

S. A. Clough, M. J. Iacono, and J. L. Moncet, "Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor" J. Geophys. Res. 97, 15,761-15,785 (1992).

Mottler, H. E.

L. L. Strow, S. E. Hannon, S. De Souza-Machado, H. E. Mottler, and D. Tobin, "An overview of the AIRS radiative transfer model," IEEE Trans. Geosci. Remote Sens. 41, 303-313 (2003).
[CrossRef]

Saunders, R. M.

M. Matricardi and R. M. Saunders, "Fast radiative transfer model for assimilation of infrared atmospheric sounding interferometer radiances," Appl. Opt. 38, 5679-5691 (1999).
[CrossRef]

R. M. Saunders, M. Matricardi, and P. Brunel, "An improved fast radiative transfer model for assimilation of satellite radiance observation," Q. J. R. Meteorol. Soc. 125, 1407-1425 (1999).
[CrossRef]

Souza-Machado, S. De

L. L. Strow, S. E. Hannon, S. De Souza-Machado, H. E. Mottler, and D. Tobin, "An overview of the AIRS radiative transfer model," IEEE Trans. Geosci. Remote Sens. 41, 303-313 (2003).
[CrossRef]

Strow, L.

S. Hannon, L. Strow, and W. McMillan, "Atmospheric infrared fast transmittance models: a comparison of two approaches," in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays and J. Wang, eds., Proc. SPIE 2830, 94-105 (1996).
[CrossRef]

Strow, L. L.

L. L. Strow, S. E. Hannon, S. De Souza-Machado, H. E. Mottler, and D. Tobin, "An overview of the AIRS radiative transfer model," IEEE Trans. Geosci. Remote Sens. 41, 303-313 (2003).
[CrossRef]

Tahara, Y.

Y. Tahara, Y. Han, P. F. W. van Delst, J. C. Derber, L. M. McMillin, X. Xiong, and T. J. Kleespies, "Development of a compact version of OPTRAN for use with high spectral resolution instruments in NWP," to be submitted to Appl. Opt.

Tobin, D.

L. L. Strow, S. E. Hannon, S. De Souza-Machado, H. E. Mottler, and D. Tobin, "An overview of the AIRS radiative transfer model," IEEE Trans. Geosci. Remote Sens. 41, 303-313 (2003).
[CrossRef]

van Delst, P. F. W.

Y. Tahara, Y. Han, P. F. W. van Delst, J. C. Derber, L. M. McMillin, X. Xiong, and T. J. Kleespies, "Development of a compact version of OPTRAN for use with high spectral resolution instruments in NWP," to be submitted to Appl. Opt.

Xiong, X.

X. Xiong and L. M. McMillin, "An alternative to the effective transmittance approach for calculating polychromatic transmittances in rapid transmittance models," Appl. Opt. 44, 67-76 (2005).
[PubMed]

Y. Tahara, Y. Han, P. F. W. van Delst, J. C. Derber, L. M. McMillin, X. Xiong, and T. J. Kleespies, "Development of a compact version of OPTRAN for use with high spectral resolution instruments in NWP," to be submitted to Appl. Opt.

Appl. Opt.

IEEE Trans. Geosci. Remote Sens.

L. L. Strow, S. E. Hannon, S. De Souza-Machado, H. E. Mottler, and D. Tobin, "An overview of the AIRS radiative transfer model," IEEE Trans. Geosci. Remote Sens. 41, 303-313 (2003).
[CrossRef]

J. Geophys. Res.

S. A. Clough, M. J. Iacono, and J. L. Moncet, "Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor" J. Geophys. Res. 97, 15,761-15,785 (1992).

Proc. SPIE

S. Hannon, L. Strow, and W. McMillan, "Atmospheric infrared fast transmittance models: a comparison of two approaches," in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays and J. Wang, eds., Proc. SPIE 2830, 94-105 (1996).
[CrossRef]

Q. J. R. Meteorol. Soc.

R. M. Saunders, M. Matricardi, and P. Brunel, "An improved fast radiative transfer model for assimilation of satellite radiance observation," Q. J. R. Meteorol. Soc. 125, 1407-1425 (1999).
[CrossRef]

Other

J. R. Eyre, "A fast radiative transfer model for satellite sounding systems," ECMWF Research Dept. Tech. Memo. 176 (European Center for Medium Range Weather Forecasts, 1991).

J. Derber, "The use of radiance data in the NCEP global and regional data assimilation systems," in Proceedings of the Twelfth International TOVS Study Conference, 2002 (Available from J. Le Marshall, JCSDA, World Weather Building, 5200 Auth Road, Camp Springs, Maryland 20746).

F. Chevallier, "TIGR-like sampled databases of atmospheric profiles from the ECMWF 50-level forecast model," ECMWF/Eumetsat NWP SAF Res. Rep. 1 (European Center for Medium Range Weather Forecasts, 1999).

Y. Tahara, Y. Han, P. F. W. van Delst, J. C. Derber, L. M. McMillin, X. Xiong, and T. J. Kleespies, "Development of a compact version of OPTRAN for use with high spectral resolution instruments in NWP," to be submitted to Appl. Opt.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Comparison of the fitting errors for HIRS flown aboard the NOAA-14 spacecraft for some new predictors in OPTRAN-V7 and with 48 profiles in 5 viewing angles.

Fig. 2
Fig. 2

Comparison of rms errors before and after the water continuum is treated as a single gas for some AIRS channels in a window region for ECMWF 52 profiles in 5 viewing angles. For the curve labeled WET, water vapor was treated as a single gas.

Fig. 3
Fig. 3

rms of the difference between OPTRAN-V7 and LBLRTM computed brightness temperature for dependent and independent profile sets for the NOAA-17 HIRS3.

Fig. 4
Fig. 4

rms of the difference between OPTRAN-V7 and LBLRTM computed brightness temperature for dependent and independent profile sets for AIRS.

Fig. 5
Fig. 5

rms of the difference between OPTRAN-V7 and LBLRTM computed brightness temperature for dependent and independent profile sets for AMSUA∕B.

Fig. 6
Fig. 6

rms of the difference between OPTRAN-V7 and LBLRTM computed brightness temperature for dependent and independent profile sets for SSMIS.

Fig. 7
Fig. 7

Comparison of the fitting errors in OPTRAN-V7 with those in OPTRAN-V6 for a dependent set of the 32 profiles and 5 viewing angles. LBLRTM was used for the calculation of transmittances.

Tables (1)

Tables Icon

Table 1 Predictors Used in OPTRAN V7

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ A i = Δ A i 1 + ( b * i + c ) ( i = 1 , 2 , , 160 ) ,
Δ A i = Δ A i 1 + d ( i = 161 , 162 , , 300 ) ,
τ total = τ d ( τ d + o τ d ) ( τ total τ d + o ) = τ d τ o * τ w * ,
τ total = τ d τ wln τ wco τ o τ c ,
τ c = τ total ( τ d τ wln τ wco τ o ) .
T m ( * i ) = i u m         i j = 1 m u j       i - 1 T j Δ u j for the m th level , i = 1 , 2 , 3 ;

Metrics