Abstract

Dammann gratings are well known for their ability to generate arrays of uniform-intensity beams from an incoming monochromatic beam. We apply the even-numbered Dammann grating to achieve dynamic optical coupled technology. A 1×N dynamic optical coupled system is developed by employing two complementary even-numbered Dammann gratings. With this system we can achieve a beam splitter and combiner as a switch between them according to the relative shift between the gratings. Also, this system is a preferable approach in integral packaging. More importantly, this device has the potential to be applied to the splitting of a large array, e.g., 8×16 array and 64×64 array, which is difficult to be realized with conventional splitting methods. We experimentally demonstrated a 1×8 coupler at the wavelength of 1550  nm. Furthermore we analyze the effects of the alignment errors between gratings and the wavelength-dependent error on efficiency and uniformity. The experimental results and the influence of alignment error and wavelength-dependent error are analyzed in detail.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
  2. J. P. Laude, DWDM Fundamentals, Components, and Applications (Artech, 2002).
  3. P. Rai-Choudhury, MEMS and MOEMS Technology and Applications (SPIE Press, 2000).
  4. P. D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, OMM Inc., "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).
    [CrossRef]
  5. R. Kasahara, M. Yanagisawa, T. Goh, and A. Sugita, "New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8 × 8 optical matrix switch," J. Lightwave Technol. 20, 993-1000 (2002).
    [CrossRef]
  6. J. J. Pan and T. Zhu, "1 × N fiber coupler employing diffractive optical element," Electron. Lett. 35, 324-325 (1999).
    [CrossRef]
  7. H. Dammann and E. Klotz, "Coherent optical generation and inspection of two-dimensional structures," Opt. Acta 24, 505-515 (1977).
    [CrossRef]
  8. U. Killat, G. Rabe, and W. Rave, "Binary phase grating for star couplers with a high splitting ratio," Fiber Integr. Opt. 4, 159-167 (1982).
    [CrossRef]
  9. J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, "Dammann gratings for laser beam shaping," Opt. Eng. 28, 1267-1275 (1989).
  10. R. L. Morrison, "Symmetries that simplify the design of spot-array phase gratings," J. Opt. Soc. Am. A. 9, 464-471 (1992).
    [CrossRef]
  11. C. Zhou and L. Liu, "Numerical study of Dammann array illuminators," Appl. Opt. 34, 5961-5969 (1995).
    [CrossRef] [PubMed]
  12. C. Zhou, J. Jia, and L. Liu. "Circular Dammann grating," Opt. Lett. 28, 2174-2176 (2003).
    [CrossRef] [PubMed]
  13. X. Zhao, C. Zhou, and L. Liu, "Dynamic optical coupling technique based on complementary Dammann gratings," in Photonic Devices and Algorithms for Computing IV, K. M. Iftekharuddin and A. A. S. Awwal, eds., Proc. SPIE 4788, 231-238 (2002).
    [CrossRef]
  14. J. Duparré, B. Götz, and R. Göing, "Micro-optical 1 × 4 fiber switch for multimode fibers with 600-μm core diameters," Appl. Opt. 42, 6889-6896 (2003).
    [CrossRef] [PubMed]
  15. C. González and S. D. Collins, "Magnetically actuated fiber-optic switch with micromachined positioning stages," Opt. Lett. 22, 709-711 (1997).
    [CrossRef] [PubMed]

2003

2002

X. Zhao, C. Zhou, and L. Liu, "Dynamic optical coupling technique based on complementary Dammann gratings," in Photonic Devices and Algorithms for Computing IV, K. M. Iftekharuddin and A. A. S. Awwal, eds., Proc. SPIE 4788, 231-238 (2002).
[CrossRef]

P. D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, OMM Inc., "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).
[CrossRef]

R. Kasahara, M. Yanagisawa, T. Goh, and A. Sugita, "New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8 × 8 optical matrix switch," J. Lightwave Technol. 20, 993-1000 (2002).
[CrossRef]

1999

J. J. Pan and T. Zhu, "1 × N fiber coupler employing diffractive optical element," Electron. Lett. 35, 324-325 (1999).
[CrossRef]

1997

1995

1992

R. L. Morrison, "Symmetries that simplify the design of spot-array phase gratings," J. Opt. Soc. Am. A. 9, 464-471 (1992).
[CrossRef]

1989

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, "Dammann gratings for laser beam shaping," Opt. Eng. 28, 1267-1275 (1989).

1982

U. Killat, G. Rabe, and W. Rave, "Binary phase grating for star couplers with a high splitting ratio," Fiber Integr. Opt. 4, 159-167 (1982).
[CrossRef]

1977

H. Dammann and E. Klotz, "Coherent optical generation and inspection of two-dimensional structures," Opt. Acta 24, 505-515 (1977).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

Collins, S. D.

Dammann, H.

H. Dammann and E. Klotz, "Coherent optical generation and inspection of two-dimensional structures," Opt. Acta 24, 505-515 (1977).
[CrossRef]

Dobbelaere, P. D.

P. D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, OMM Inc., "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).
[CrossRef]

Downs, M. M.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, "Dammann gratings for laser beam shaping," Opt. Eng. 28, 1267-1275 (1989).

Duparré, J.

Falta, K.

P. D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, OMM Inc., "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).
[CrossRef]

Fan, L.

P. D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, OMM Inc., "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).
[CrossRef]

Gloeckner, S.

P. D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, OMM Inc., "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).
[CrossRef]

Goh, T.

Göing, R.

González, C.

Götz, B.

Jahns, J.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, "Dammann gratings for laser beam shaping," Opt. Eng. 28, 1267-1275 (1989).

Jia, J.

Kasahara, R.

Killat, U.

U. Killat, G. Rabe, and W. Rave, "Binary phase grating for star couplers with a high splitting ratio," Fiber Integr. Opt. 4, 159-167 (1982).
[CrossRef]

Klotz, E.

H. Dammann and E. Klotz, "Coherent optical generation and inspection of two-dimensional structures," Opt. Acta 24, 505-515 (1977).
[CrossRef]

Laude, J. P.

J. P. Laude, DWDM Fundamentals, Components, and Applications (Artech, 2002).

Liu, L.

C. Zhou, J. Jia, and L. Liu. "Circular Dammann grating," Opt. Lett. 28, 2174-2176 (2003).
[CrossRef] [PubMed]

X. Zhao, C. Zhou, and L. Liu, "Dynamic optical coupling technique based on complementary Dammann gratings," in Photonic Devices and Algorithms for Computing IV, K. M. Iftekharuddin and A. A. S. Awwal, eds., Proc. SPIE 4788, 231-238 (2002).
[CrossRef]

C. Zhou and L. Liu, "Numerical study of Dammann array illuminators," Appl. Opt. 34, 5961-5969 (1995).
[CrossRef] [PubMed]

Morrison, R. L.

R. L. Morrison, "Symmetries that simplify the design of spot-array phase gratings," J. Opt. Soc. Am. A. 9, 464-471 (1992).
[CrossRef]

Pan, J. J.

J. J. Pan and T. Zhu, "1 × N fiber coupler employing diffractive optical element," Electron. Lett. 35, 324-325 (1999).
[CrossRef]

Patra, S.

P. D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, OMM Inc., "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).
[CrossRef]

Prise, M. E.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, "Dammann gratings for laser beam shaping," Opt. Eng. 28, 1267-1275 (1989).

Rabe, G.

U. Killat, G. Rabe, and W. Rave, "Binary phase grating for star couplers with a high splitting ratio," Fiber Integr. Opt. 4, 159-167 (1982).
[CrossRef]

Rai-Choudhury, P.

P. Rai-Choudhury, MEMS and MOEMS Technology and Applications (SPIE Press, 2000).

Rave, W.

U. Killat, G. Rabe, and W. Rave, "Binary phase grating for star couplers with a high splitting ratio," Fiber Integr. Opt. 4, 159-167 (1982).
[CrossRef]

Streibl, N.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, "Dammann gratings for laser beam shaping," Opt. Eng. 28, 1267-1275 (1989).

Sugita, A.

Walker, S. J.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, "Dammann gratings for laser beam shaping," Opt. Eng. 28, 1267-1275 (1989).

Yanagisawa, M.

Zhao, X.

X. Zhao, C. Zhou, and L. Liu, "Dynamic optical coupling technique based on complementary Dammann gratings," in Photonic Devices and Algorithms for Computing IV, K. M. Iftekharuddin and A. A. S. Awwal, eds., Proc. SPIE 4788, 231-238 (2002).
[CrossRef]

Zhou, C.

C. Zhou, J. Jia, and L. Liu. "Circular Dammann grating," Opt. Lett. 28, 2174-2176 (2003).
[CrossRef] [PubMed]

X. Zhao, C. Zhou, and L. Liu, "Dynamic optical coupling technique based on complementary Dammann gratings," in Photonic Devices and Algorithms for Computing IV, K. M. Iftekharuddin and A. A. S. Awwal, eds., Proc. SPIE 4788, 231-238 (2002).
[CrossRef]

C. Zhou and L. Liu, "Numerical study of Dammann array illuminators," Appl. Opt. 34, 5961-5969 (1995).
[CrossRef] [PubMed]

Zhu, T.

J. J. Pan and T. Zhu, "1 × N fiber coupler employing diffractive optical element," Electron. Lett. 35, 324-325 (1999).
[CrossRef]

Appl. Opt.

Electron. Lett.

J. J. Pan and T. Zhu, "1 × N fiber coupler employing diffractive optical element," Electron. Lett. 35, 324-325 (1999).
[CrossRef]

Fiber Integr. Opt.

U. Killat, G. Rabe, and W. Rave, "Binary phase grating for star couplers with a high splitting ratio," Fiber Integr. Opt. 4, 159-167 (1982).
[CrossRef]

IEEE Commun. Mag.

P. D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, OMM Inc., "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A.

R. L. Morrison, "Symmetries that simplify the design of spot-array phase gratings," J. Opt. Soc. Am. A. 9, 464-471 (1992).
[CrossRef]

Opt. Acta

H. Dammann and E. Klotz, "Coherent optical generation and inspection of two-dimensional structures," Opt. Acta 24, 505-515 (1977).
[CrossRef]

Opt. Eng.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, "Dammann gratings for laser beam shaping," Opt. Eng. 28, 1267-1275 (1989).

Opt. Lett.

Proc. SPIE

X. Zhao, C. Zhou, and L. Liu, "Dynamic optical coupling technique based on complementary Dammann gratings," in Photonic Devices and Algorithms for Computing IV, K. M. Iftekharuddin and A. A. S. Awwal, eds., Proc. SPIE 4788, 231-238 (2002).
[CrossRef]

Other

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

J. P. Laude, DWDM Fundamentals, Components, and Applications (Artech, 2002).

P. Rai-Choudhury, MEMS and MOEMS Technology and Applications (SPIE Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic structure of a 1 × 8 dynamic optical coupled system that has an even-numbered Dammann grating. (a) When there is no shift between the two even-numbered Dammann gratings, it works as a splitter. (b) When there is an exact half-period shift between the two even-numbered Dammann gratings, it functions as a switch.

Fig. 2
Fig. 2

Schematic illustration of the phase distribution of the two complementary phase plates in the first design approach. See text for details.

Fig. 3
Fig. 3

Schematic illustration of the phase distribution of the two complementary phase plates in the second design approach. Note that the magnitude of the phase modulation is half of a conventional Dammann grating.

Fig. 4
Fig. 4

Measured surface profile of the fabricated 1 × 8 even-numbered Dammann grating obtained with Taylor Hobson Inc. step height standard equipment.

Fig. 5
Fig. 5

Light spot(s) taken on the rear focusing plane of the output lens with an infrared CCD camera. (a) The output light spot marked with 0 when the coupler works as a switch. (b) The output light spots marked with −7, −5, −3, −1, 0, +1, +3, +5, +7 when the coupler works as a splitter.

Fig. 6
Fig. 6

Measured insertion loss of eight output channels at a wavelength of 1550 nm.

Fig. 7
Fig. 7

Schematic illustration of the overall phase distribution φ(x) that is the summation of the two complementary phase plates φ1(x) and φ2(x) with a slight alignment error δ between them when the coupler works as as splitter as shown in Fig. 1(a).

Fig. 8
Fig. 8

Larger insertion losses of eight channels with an increased alignment error δ at (a) 1.01 μm, (b) 1.53 μm, (c) 2.01 μm, and (d) 2.53 μm between two even-numbered Dammann gratings in Fig. 7.

Fig. 9
Fig. 9

Relationship of the decreased efficiency and the worse uniformity with the increased alignment error δ between the two complementary even-numbered Dammann gratings shown in Fig. 7.

Fig. 10
Fig. 10

Relationship of the decreased isolation (i.e., the increased cross talk) of the zero-order channel depending-on the increased alignment error δ of Fig. 7.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

t k ( x ) = rect [ x ( x k + x k 1 ) / 2 x k x k 1 ] ,
J { t k ( x k ) } = 1 2 [ ( sin α k sin α k 1 ) + i ( cos α k cos α k 1 ) ] ,
I n = ( 1 n π ) 2 { [ k = 1 M ( 1 ) k sin α k ] 2 + [ 1 + k = 1 M ( 1 ) k cos α k ] 2 } ,
η = 2 i = 1 N I 2 i 1 .
φ ( x k + d / 2 ) = φ ( x k ) + π ,
uni  =   max ( I n ) min ( I n ) max ( I n ) + min ( I n ) ,
IL  =   10   log     P in P out ( dB ) ,
I = 10 log     P T P in ( dB ) ,
φ 1 ( x k ) = { φ Dam ( x k ) , 0 < x k < d 2 0 ,         d 2 < x k < d ,
φ 2 ( x k ) = { 0 , 0 < x k < d 2 φ D a m ( x k ) + π , d 2 < x k < d .
φ ( x k ) = φ 1 ( x k ) + φ 2 ( x k ) = { φ Dam ( x k ) , 0 < x k < d 2 φ Dam ( x k ) + π , d 2 < x k < d .
φ ( x k ) = φ 1 ( x k ) + φ 2 ( x k + d 2 ) = { φ Dam ( x k ) φ Dam ( x k ) = 0 , 0 < x k < d 2 0 ,                         d 2 < x k < d .
φ 1 = φ 2 = φ Dam ( x k ) 2 .
A ( n ) = 0 1 t ( x ) exp [ i θ ( x ) ] exp ( i 2 n π x ) d x .
A ( n ) = 1 i 2 n π k = 1 K exp [ i θ k ( x ) ] [ exp ( i 2 n π x k 1 ) exp ( i 2 n π x k ) ] .
A ( n ) = 1 i 2 n π { k = 1 K 1 exp ( i 2 n π x k ) [ exp ( i θ k + 1 ) exp ( i θ k ) ] + exp ( i θ 1 ) exp ( i θ K ) } .
A ( 0 ) = k = 1 K ( x k x k 1 ) exp ( i θ k ) .
I ( n ) = A ( n ) A * ( n ) .
x k + K 2 = x k + 1 2 , 0 k K 2 .
I ( 0 ) = A ( 0 ) A * ( 0 ) = 100 δ 2 .
I 0 = [ 1 + 2 sin 2    θ 2 k = 1 K ( - 1 ) k + 1 x k ] 2 + sin 2 θ [ k = 1 K ( - 1 ) k + 1 x k ] 2 ,
I n = [ sin ( θ / 2 ) n π ] 2 { [ k = 1 K ( - 1 ) k cos α k ] 2 + [ k = 1 K ( - 1 ) k + 1 sin α k ] 2 } ,

Metrics