Abstract

We demonstrate that one can cancel the bending-induced linear birefringence in single-mode fibers by inducing a controlled anisotropy in a direction orthogonal to the bending plane. In particular, the controlled anisotropy can be generated by application of a lateral compressive stress on the fiber. This effect can be applied for the construction of birefringence-free fiber coils in Faraday sensor heads (e.g., in current sensors) to improve their sensitivity.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
  2. M. Lopez-Higuera, ed., Handbook of Optical Fiber Sensing Technology (Wiley, 2002).
  3. R. Ulrich, S. C. Rashleigh, and W. Eickhof, "Bending-induced birefringence in single-mode fibers," Opt. Lett. 5, 273-275 (1980).
    [CrossRef] [PubMed]
  4. S. C. Rashleigh and R. Ulrich, "High birefringence in tension-coiled single-mode fibers," Opt. Lett. 5, 354-356 (1980).
    [CrossRef] [PubMed]
  5. F. El-Diasty, "Multiple-beam interferometric determination of Poisson's ratio and strain distribution profiles along the cross section of bent single-mode optical fibers," Appl. Opt. 39, 3197-3201 (2000).
    [CrossRef]
  6. H. Tai and R. Rogowski, "Optical anisotropy induced by torsion and bending in an optical fiber," Opt. Fiber Technol. 8, 162-169 (2002).
    [CrossRef]
  7. D. Tang , A. H. Rose, G. W. Day, and S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors," J. Lightwave Technol. 9, 1031-1037 (1991).
    [CrossRef]
  8. A. H. Rose, Z. B. Ren, and G. W. Day, "Twisting and annealing optical fiber for current sensors," J. Lightwave Technol. 14, 2492-2498 (1996).
    [CrossRef]
  9. R. Laming and D. Payne, "Electric current sensors employing spun highly birefringent optical fibers," J. Lightwave Technol. 7, 2084-2094 (1989).
    [CrossRef]
  10. A. H. Rose, P. G. Polynkin, and J. Blake, "Electro-optic Kerr effects in spun high-birefringent fiber current sensors," in Proceedings of the 14th International Conference on Optical Fiber Sensors, A. G. Mignani, and H. C. Laferve, eds., Proc. SPIE 4185,348-351 (2000).
  11. K. Kurosawa, "Optical current transducers using flint glass fiber as the Faraday sensor element," in Proceedings of the 11th Optical Fiber Sensors Conference (Japan Society of Applied Physics, 1996), pp. 134-139.
  12. A. Bertholds and R. Dändliker , "High-resolution photoelastic pressure sensor using low-birefringence fiber," Appl. Opt. 25, 340-343 (1986).
    [CrossRef] [PubMed]
  13. M. Johnson, "In-line fiber-optical polarization transformer," Appl. Opt. 18, 1288-1289 (1979).
    [CrossRef] [PubMed]
  14. T. Mitsui, "Development of a polarization-preserving optical-fiber probe for near-field scanning optical microscopy and the influences of bending and squeezing on the polarization properties," Rev. Sci. Instrum. 76, 043703 (2005).
    [CrossRef]
  15. Z. B. Ren, Ph. Robert, and P.-A. Paratte, "Temperature dependence of bent- and twist- induced birefringence in a low-birefringence fiber," Opt. Lett. 13, 62-64 (1988).
    [CrossRef] [PubMed]
  16. K. Bohnert, P. Gabus, J. Nehring, and H. Brändle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightwave Technol. 20, 267-276 (2002).
    [CrossRef]

2005

T. Mitsui, "Development of a polarization-preserving optical-fiber probe for near-field scanning optical microscopy and the influences of bending and squeezing on the polarization properties," Rev. Sci. Instrum. 76, 043703 (2005).
[CrossRef]

2003

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).

2002

H. Tai and R. Rogowski, "Optical anisotropy induced by torsion and bending in an optical fiber," Opt. Fiber Technol. 8, 162-169 (2002).
[CrossRef]

K. Bohnert, P. Gabus, J. Nehring, and H. Brändle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightwave Technol. 20, 267-276 (2002).
[CrossRef]

2000

1996

A. H. Rose, Z. B. Ren, and G. W. Day, "Twisting and annealing optical fiber for current sensors," J. Lightwave Technol. 14, 2492-2498 (1996).
[CrossRef]

1991

D. Tang , A. H. Rose, G. W. Day, and S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors," J. Lightwave Technol. 9, 1031-1037 (1991).
[CrossRef]

1989

R. Laming and D. Payne, "Electric current sensors employing spun highly birefringent optical fibers," J. Lightwave Technol. 7, 2084-2094 (1989).
[CrossRef]

1988

1986

1980

1979

Bertholds, A.

Blake, J.

A. H. Rose, P. G. Polynkin, and J. Blake, "Electro-optic Kerr effects in spun high-birefringent fiber current sensors," in Proceedings of the 14th International Conference on Optical Fiber Sensors, A. G. Mignani, and H. C. Laferve, eds., Proc. SPIE 4185,348-351 (2000).

Bohnert, K.

Brändle, H.

Dändliker, R.

Day, G. W.

A. H. Rose, Z. B. Ren, and G. W. Day, "Twisting and annealing optical fiber for current sensors," J. Lightwave Technol. 14, 2492-2498 (1996).
[CrossRef]

D. Tang , A. H. Rose, G. W. Day, and S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors," J. Lightwave Technol. 9, 1031-1037 (1991).
[CrossRef]

Eickhof, W.

El-Diasty, F.

Etzel, S. M.

D. Tang , A. H. Rose, G. W. Day, and S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors," J. Lightwave Technol. 9, 1031-1037 (1991).
[CrossRef]

Gabus, P.

Johnson, M.

Kurosawa, K.

K. Kurosawa, "Optical current transducers using flint glass fiber as the Faraday sensor element," in Proceedings of the 11th Optical Fiber Sensors Conference (Japan Society of Applied Physics, 1996), pp. 134-139.

Laming, R.

R. Laming and D. Payne, "Electric current sensors employing spun highly birefringent optical fibers," J. Lightwave Technol. 7, 2084-2094 (1989).
[CrossRef]

Lee, B.

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).

Mitsui, T.

T. Mitsui, "Development of a polarization-preserving optical-fiber probe for near-field scanning optical microscopy and the influences of bending and squeezing on the polarization properties," Rev. Sci. Instrum. 76, 043703 (2005).
[CrossRef]

Nehring, J.

Paratte, P.-A.

Payne, D.

R. Laming and D. Payne, "Electric current sensors employing spun highly birefringent optical fibers," J. Lightwave Technol. 7, 2084-2094 (1989).
[CrossRef]

Polynkin, P. G.

A. H. Rose, P. G. Polynkin, and J. Blake, "Electro-optic Kerr effects in spun high-birefringent fiber current sensors," in Proceedings of the 14th International Conference on Optical Fiber Sensors, A. G. Mignani, and H. C. Laferve, eds., Proc. SPIE 4185,348-351 (2000).

Rashleigh, S. C.

Rashleigh, S. C.

Ren, Z. B.

A. H. Rose, Z. B. Ren, and G. W. Day, "Twisting and annealing optical fiber for current sensors," J. Lightwave Technol. 14, 2492-2498 (1996).
[CrossRef]

Z. B. Ren, Ph. Robert, and P.-A. Paratte, "Temperature dependence of bent- and twist- induced birefringence in a low-birefringence fiber," Opt. Lett. 13, 62-64 (1988).
[CrossRef] [PubMed]

Robert, Ph.

Rogowski, R.

H. Tai and R. Rogowski, "Optical anisotropy induced by torsion and bending in an optical fiber," Opt. Fiber Technol. 8, 162-169 (2002).
[CrossRef]

Rose, A. H.

A. H. Rose, Z. B. Ren, and G. W. Day, "Twisting and annealing optical fiber for current sensors," J. Lightwave Technol. 14, 2492-2498 (1996).
[CrossRef]

D. Tang , A. H. Rose, G. W. Day, and S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors," J. Lightwave Technol. 9, 1031-1037 (1991).
[CrossRef]

A. H. Rose, P. G. Polynkin, and J. Blake, "Electro-optic Kerr effects in spun high-birefringent fiber current sensors," in Proceedings of the 14th International Conference on Optical Fiber Sensors, A. G. Mignani, and H. C. Laferve, eds., Proc. SPIE 4185,348-351 (2000).

Tai, H.

H. Tai and R. Rogowski, "Optical anisotropy induced by torsion and bending in an optical fiber," Opt. Fiber Technol. 8, 162-169 (2002).
[CrossRef]

Tang, D.

D. Tang , A. H. Rose, G. W. Day, and S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors," J. Lightwave Technol. 9, 1031-1037 (1991).
[CrossRef]

Ulrich, R.

Appl. Opt.

J. Lightwave Technol.

K. Bohnert, P. Gabus, J. Nehring, and H. Brändle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightwave Technol. 20, 267-276 (2002).
[CrossRef]

D. Tang , A. H. Rose, G. W. Day, and S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors," J. Lightwave Technol. 9, 1031-1037 (1991).
[CrossRef]

A. H. Rose, Z. B. Ren, and G. W. Day, "Twisting and annealing optical fiber for current sensors," J. Lightwave Technol. 14, 2492-2498 (1996).
[CrossRef]

R. Laming and D. Payne, "Electric current sensors employing spun highly birefringent optical fibers," J. Lightwave Technol. 7, 2084-2094 (1989).
[CrossRef]

Opt. Fiber Technol.

H. Tai and R. Rogowski, "Optical anisotropy induced by torsion and bending in an optical fiber," Opt. Fiber Technol. 8, 162-169 (2002).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

T. Mitsui, "Development of a polarization-preserving optical-fiber probe for near-field scanning optical microscopy and the influences of bending and squeezing on the polarization properties," Rev. Sci. Instrum. 76, 043703 (2005).
[CrossRef]

Other

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).

M. Lopez-Higuera, ed., Handbook of Optical Fiber Sensing Technology (Wiley, 2002).

A. H. Rose, P. G. Polynkin, and J. Blake, "Electro-optic Kerr effects in spun high-birefringent fiber current sensors," in Proceedings of the 14th International Conference on Optical Fiber Sensors, A. G. Mignani, and H. C. Laferve, eds., Proc. SPIE 4185,348-351 (2000).

K. Kurosawa, "Optical current transducers using flint glass fiber as the Faraday sensor element," in Proceedings of the 11th Optical Fiber Sensors Conference (Japan Society of Applied Physics, 1996), pp. 134-139.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Compressive (radial) stress σ x induced in a bent fiber.

Fig. 2
Fig. 2

Optical fiber subjected to external compressive stress in the y direction, i.e., orthogonal to the bending plane.

Fig. 3
Fig. 3

(a) Cross section of a hi-bi fiber with stress-applying parts in the x direction, i.e. the compressive intrinsic stress is in the y direction. (b) Coiled hi-bi fiber with the y direction orthogonal to the (xz) bending plane.

Fig. 4
Fig. 4

Experimental setup: QW, quarter-wave plate with its fast axis (F.A.) at 45 deg with respect to the polarization direction of the incident laser beam. PL, polarized He–Ne laser; P, rotating polarizer; D, photodetector.

Fig. 5
Fig. 5

Retardance as a function of applied force for a fiber loop with radius R = 10 ± 1 mm. The total birefringence is canceled for F = 3.1 N.

Fig. 6
Fig. 6

Applied lateral force per unit length (F∕l) required for elimination of birefringence versus 1∕R 2.

Fig. 7
Fig. 7

Fiber coil on a hollow cylinder subjected to lateral compression. A spring (S 0) of rectangular cross section was coiled together with the fiber to achieve lateral compression of the whole fiber. Spring S 1 permits fine tuning of the lateral stress applied by a nut (N) placed at the cylinder end.

Equations (89)

Equations on this page are rendered with MathJax. Learn more.

β ( 2 π / λ ) ( δ n x δ n y )
δ n x , y
β = ( 2 π / λ ) C ( σ x σ y ) ,
C ( n 3 / 2 E ) ( p 11 p 12 ) ( 1 + ν ) ,
σ x , y
p 11 , 12
n = 1.458
p 11 = 0.121
p 12 = 0.270
ν = 0.17
E = 7.3 × 10 10 N / m 2
C 3.7 × 10 12 m 2 / N
σ x
σ x = ( E / 2 ) ( r / R ) 2 σ ¯ z ( r / R ) ( 2 3 ν ) / ( 1 ν ) ,
σ ¯ z
σ y
σ x
σ y
σ y σ x
σ y
( σ y )
σ y
σ y = a F l r ,
l = 2 π R
( l b )
2 π ( rad )
( β I )
| β I | = 2 π / l b .
| β B | = | β I |
β B ( 2 π / λ ) C σ x
σ ¯ z = 0
( 2 π / λ ) | C | ( E / 2 ) ( r / R ) 2 = 2 π / l b .
E = 7.3 × 10 10 N m 2
| C | 3.7   × 10 12 m 2 / N
r = 62.5 μ m
λ = 0.633 μ m
l b = 12   cm
( β )
β = β B + β I .
δ r e s ( = β l )
( T )
Δ δ r e s ( β B T + β I T ) l Δ T + ( β B + β I ) ( l T ) Δ T = ( 1 β B β B T + 1 β B β I T ) ( β B l ) Δ T + δ r e s ( 1 l l T ) Δ T .
( 1 / β B ) ( β B / T )
5.7 × 10 4 K 1
( 1 / l ) ( l / T ) 5 × 10 7 K 1
β B β I
Δ δ r e s ( 1 β B β B T 1 β l β I T ) ( β B l ) Δ T .
1 β I β I T ( = 1 l b l b T )
( 1 / β B ) ( β B / T )
( 1 β I β I T 2.2 × 10 4 K 1 ) .
( λ = 633   nm,   r = 62.5 μ m )
< 1 deg m
( β l )
β l = π / 2 arc   cos ( I max I min I max + I min ) ( m o d u l o π / 2 ) ,
I max , min
10   to   40   mm
1 / R 2
R = 10 ± 1   mm
1.4   to   3 .1   N
( F / l )
( F / l )
1 / R 2
± 1   mm
( F / l )   and   1 / R 2
σ y σ x
( σ ¯ z )
l = π R )
a = 0.63 ± 0.02
8 %
( S 1 )
( S 0 )
R = 8.5   mm
I 1.76   m
σ ¯ z ( π r 2 ) = 0.1   N
β l 198.2   rad
π / 2
( θ )
i 0 = 400   A
θ     β l ,
θ N 0 [ sin ( β l ) β l ] V i 0 ,
N 0
( V = 2.8 × 10 4 deg / A
β l
θ 1.05 ± 0.05   deg
8 × 10 5 deg / A
sin ( β l ) / β l = 0.29
β l 2.4   rad
( 2.4   rad)
( 198   rad)

Metrics