S. He, S. Xiao, L. Shen, J. He, and J. Fu, "A new finite-difference time-domain method for photonic crystals consisting of nearly-free-electron-metals," J. Phys. A 34, 9713-9721 (2001).

[CrossRef]

M. Okoniewski, M. Mrozowski, and M. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guid. Wave Lett. 7, 121-123 (1997).

[CrossRef]

K. Chamberlin and L. Gordon, "Modeling good conductors using the finite difference time-domain technique," IEEE Trans. Electromagn. Compat. 37, 210-216 (1995).

[CrossRef]

W. Tsay and D. Pozar, "Application of the FDTD technique to periodic problems in scattering and radiation," IEEE Microwave Guid. Wave Lett. 3, 250-252 (1993).

R. Luebbers, F. Hunsberger, and K. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag. 39, 29-34 (1991).

[CrossRef]

A. Taflove and M. Brodwin, "Scattering problems using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory Tech. MTT-23, 623-630 (1975).

[CrossRef]

R. Ulrich, "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys. 7, 37-55 (1967).

[CrossRef]

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).

A. Taflove and M. Brodwin, "Scattering problems using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory Tech. MTT-23, 623-630 (1975).

[CrossRef]

K. Chamberlin and L. Gordon, "Modeling good conductors using the finite difference time-domain technique," IEEE Trans. Electromagn. Compat. 37, 210-216 (1995).

[CrossRef]

G. Fowles, Introduction to Modern Optics (Dover, 1989).

S. He, S. Xiao, L. Shen, J. He, and J. Fu, "A new finite-difference time-domain method for photonic crystals consisting of nearly-free-electron-metals," J. Phys. A 34, 9713-9721 (2001).

[CrossRef]

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998).

K. Chamberlin and L. Gordon, "Modeling good conductors using the finite difference time-domain technique," IEEE Trans. Electromagn. Compat. 37, 210-216 (1995).

[CrossRef]

A. Taflove and S. Hagness, Computational Electrodynamics (Artech, 2000).

S. He, S. Xiao, L. Shen, J. He, and J. Fu, "A new finite-difference time-domain method for photonic crystals consisting of nearly-free-electron-metals," J. Phys. A 34, 9713-9721 (2001).

[CrossRef]

S. He, S. Xiao, L. Shen, J. He, and J. Fu, "A new finite-difference time-domain method for photonic crystals consisting of nearly-free-electron-metals," J. Phys. A 34, 9713-9721 (2001).

[CrossRef]

R. Luebbers, F. Hunsberger, and K. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag. 39, 29-34 (1991).

[CrossRef]

D. Lynch and W. Hunter, "Comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids, E. Palik, ed. (Academic, 1985), pp. 294-295.

D. Smith, E. Shiles, and M. Inokuti, "The optical properties of metallic aluminum," in Handbook of Optical Constants of Solids, E. Palik, ed. (Academic, 1985), pp. 398-401.

J. Judkins and R. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Am. A 12, 1974-1983 (1995).

R. Luebbers, F. Hunsberger, and K. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag. 39, 29-34 (1991).

[CrossRef]

R. Luebbers, F. Hunsberger, and K. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag. 39, 29-34 (1991).

[CrossRef]

D. Lynch and W. Hunter, "Comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids, E. Palik, ed. (Academic, 1985), pp. 294-295.

A. Miller, "Fundamental optical properties of solids," in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 1995), Vol. 1, p. 9.15.

M. Okoniewski, M. Mrozowski, and M. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guid. Wave Lett. 7, 121-123 (1997).

[CrossRef]

M. Okoniewski, M. Mrozowski, and M. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guid. Wave Lett. 7, 121-123 (1997).

[CrossRef]

W. Tsay and D. Pozar, "Application of the FDTD technique to periodic problems in scattering and radiation," IEEE Microwave Guid. Wave Lett. 3, 250-252 (1993).

S. He, S. Xiao, L. Shen, J. He, and J. Fu, "A new finite-difference time-domain method for photonic crystals consisting of nearly-free-electron-metals," J. Phys. A 34, 9713-9721 (2001).

[CrossRef]

D. Smith, E. Shiles, and M. Inokuti, "The optical properties of metallic aluminum," in Handbook of Optical Constants of Solids, E. Palik, ed. (Academic, 1985), pp. 398-401.

D. Smith, E. Shiles, and M. Inokuti, "The optical properties of metallic aluminum," in Handbook of Optical Constants of Solids, E. Palik, ed. (Academic, 1985), pp. 398-401.

M. Okoniewski, M. Mrozowski, and M. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guid. Wave Lett. 7, 121-123 (1997).

[CrossRef]

A. Taflove and M. Brodwin, "Scattering problems using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory Tech. MTT-23, 623-630 (1975).

[CrossRef]

A. Taflove and S. Hagness, Computational Electrodynamics (Artech, 2000).

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998).

W. Tsay and D. Pozar, "Application of the FDTD technique to periodic problems in scattering and radiation," IEEE Microwave Guid. Wave Lett. 3, 250-252 (1993).

R. Ulrich, "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys. 7, 37-55 (1967).

[CrossRef]

S. He, S. Xiao, L. Shen, J. He, and J. Fu, "A new finite-difference time-domain method for photonic crystals consisting of nearly-free-electron-metals," J. Phys. A 34, 9713-9721 (2001).

[CrossRef]

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).

J. Judkins and R. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Am. A 12, 1974-1983 (1995).

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).

R. Luebbers, F. Hunsberger, and K. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag. 39, 29-34 (1991).

[CrossRef]

K. Chamberlin and L. Gordon, "Modeling good conductors using the finite difference time-domain technique," IEEE Trans. Electromagn. Compat. 37, 210-216 (1995).

[CrossRef]

R. Ulrich, "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys. 7, 37-55 (1967).

[CrossRef]

J. Judkins and R. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Am. A 12, 1974-1983 (1995).

S. He, S. Xiao, L. Shen, J. He, and J. Fu, "A new finite-difference time-domain method for photonic crystals consisting of nearly-free-electron-metals," J. Phys. A 34, 9713-9721 (2001).

[CrossRef]

A. Taflove and M. Brodwin, "Scattering problems using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory Tech. MTT-23, 623-630 (1975).

[CrossRef]

M. Okoniewski, M. Mrozowski, and M. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guid. Wave Lett. 7, 121-123 (1997).

[CrossRef]

G. Fowles, Introduction to Modern Optics (Dover, 1989).

A. Miller, "Fundamental optical properties of solids," in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 1995), Vol. 1, p. 9.15.

D. Smith, E. Shiles, and M. Inokuti, "The optical properties of metallic aluminum," in Handbook of Optical Constants of Solids, E. Palik, ed. (Academic, 1985), pp. 398-401.

D. Lynch and W. Hunter, "Comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids, E. Palik, ed. (Academic, 1985), pp. 294-295.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998).

W. Tsay and D. Pozar, "Application of the FDTD technique to periodic problems in scattering and radiation," IEEE Microwave Guid. Wave Lett. 3, 250-252 (1993).

A. Taflove and S. Hagness, Computational Electrodynamics (Artech, 2000).