Abstract

The reflection resonance spectrum of a subwavelength diffraction-grating-coupled waveguide is used to analyze biomolecular interactions in real time. By detecting this resonance wavelength shift, the optical waveguide biosensor provides the ability to identify the kinetics of the biomolecular interaction on an on-line basis without the need for extrinsic labeling of the biomolecules. A theoretical analysis of the subwavelength optical waveguide biosensor is performed. A biosensor with a narrow reflection resonance spectrum, and hence an enhanced detection resolution, is then designed and fabricated. Currently, the detection limit of the optical waveguide sensor is approximately 105 refractive-index units. The biosensor is successfully applied to study of the dynamic response of an antibody interaction with protein G adsorbed on the sensing surface.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription