Abstract

We demonstrate the temporal evolution of terahertz (THz) wave propagation in one-dimensional periodic dielectrics. Distributed Bragg reflectors and a resonant cavity are investigated: The structures involve air gaps interleaved between polymer films. Transmitted and reflected broadband THz waves are measured by means of THz time-domain spectroscopy. The experimental results agree well with transfer matrix calculations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Maslov and D. S. Citrin, "Optical absorption and sideband generation in quantum wells driven by a terahertz electric field," Phys. Rev. B 62, 16686-16691 (2000).
    [CrossRef]
  2. M. Y. Su, S. G. Carter, M. S. Sherwin, A. Huntington, and L. A. Coldren, "Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells," Appl. Phys. Lett. 81, 1564-1566 (2002).
    [CrossRef]
  3. P. Y. Han, G. C. Cho, and X.-C. Zhang, "Time-domain transillumination of biological tissues with terahertz pulses," Opt. Lett. 25, 242-244 (2000).
    [CrossRef]
  4. E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
    [CrossRef] [PubMed]
  5. C. Rönne, P. Åstrand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
    [CrossRef]
  6. Q. Wu and X.-C. Zhang, "Ultrafast electro-optic field sensors," Appl. Phys. Lett. 68, 1604-1606 (1996).
    [CrossRef]
  7. E. Hecht and A. Zajac, Optics, 4th ed. (Addison-Wesley, 1974), pp. 171-175.

2002

M. Y. Su, S. G. Carter, M. S. Sherwin, A. Huntington, and L. A. Coldren, "Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells," Appl. Phys. Lett. 81, 1564-1566 (2002).
[CrossRef]

2001

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

2000

A. V. Maslov and D. S. Citrin, "Optical absorption and sideband generation in quantum wells driven by a terahertz electric field," Phys. Rev. B 62, 16686-16691 (2000).
[CrossRef]

P. Y. Han, G. C. Cho, and X.-C. Zhang, "Time-domain transillumination of biological tissues with terahertz pulses," Opt. Lett. 25, 242-244 (2000).
[CrossRef]

1999

C. Rönne, P. Åstrand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
[CrossRef]

1996

Q. Wu and X.-C. Zhang, "Ultrafast electro-optic field sensors," Appl. Phys. Lett. 68, 1604-1606 (1996).
[CrossRef]

Åstrand, P.

C. Rönne, P. Åstrand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
[CrossRef]

Bonn, M.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

Carter, S. G.

M. Y. Su, S. G. Carter, M. S. Sherwin, A. Huntington, and L. A. Coldren, "Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells," Appl. Phys. Lett. 81, 1564-1566 (2002).
[CrossRef]

Cho, G. C.

Citrin, D. S.

A. V. Maslov and D. S. Citrin, "Optical absorption and sideband generation in quantum wells driven by a terahertz electric field," Phys. Rev. B 62, 16686-16691 (2000).
[CrossRef]

Coldren, L. A.

M. Y. Su, S. G. Carter, M. S. Sherwin, A. Huntington, and L. A. Coldren, "Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells," Appl. Phys. Lett. 81, 1564-1566 (2002).
[CrossRef]

Han, P. Y.

Hecht, E.

E. Hecht and A. Zajac, Optics, 4th ed. (Addison-Wesley, 1974), pp. 171-175.

Heinz, T. F.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

Huntington, A.

M. Y. Su, S. G. Carter, M. S. Sherwin, A. Huntington, and L. A. Coldren, "Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells," Appl. Phys. Lett. 81, 1564-1566 (2002).
[CrossRef]

Keiding, S. R.

C. Rönne, P. Åstrand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
[CrossRef]

Knoesel, E.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

Maslov, A. V.

A. V. Maslov and D. S. Citrin, "Optical absorption and sideband generation in quantum wells driven by a terahertz electric field," Phys. Rev. B 62, 16686-16691 (2000).
[CrossRef]

Rönne, C.

C. Rönne, P. Åstrand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
[CrossRef]

Shan, J.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

Sherwin, M. S.

M. Y. Su, S. G. Carter, M. S. Sherwin, A. Huntington, and L. A. Coldren, "Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells," Appl. Phys. Lett. 81, 1564-1566 (2002).
[CrossRef]

Su, M. Y.

M. Y. Su, S. G. Carter, M. S. Sherwin, A. Huntington, and L. A. Coldren, "Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells," Appl. Phys. Lett. 81, 1564-1566 (2002).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, "Ultrafast electro-optic field sensors," Appl. Phys. Lett. 68, 1604-1606 (1996).
[CrossRef]

Zajac, A.

E. Hecht and A. Zajac, Optics, 4th ed. (Addison-Wesley, 1974), pp. 171-175.

Zhang, X.-C.

Appl. Phys. Lett.

Q. Wu and X.-C. Zhang, "Ultrafast electro-optic field sensors," Appl. Phys. Lett. 68, 1604-1606 (1996).
[CrossRef]

M. Y. Su, S. G. Carter, M. S. Sherwin, A. Huntington, and L. A. Coldren, "Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells," Appl. Phys. Lett. 81, 1564-1566 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. B

A. V. Maslov and D. S. Citrin, "Optical absorption and sideband generation in quantum wells driven by a terahertz electric field," Phys. Rev. B 62, 16686-16691 (2000).
[CrossRef]

Phys. Rev. Lett.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

C. Rönne, P. Åstrand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
[CrossRef]

Other

E. Hecht and A. Zajac, Optics, 4th ed. (Addison-Wesley, 1974), pp. 171-175.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setups for THz transmission and reflection measurements. BS, beam splitter.

Fig. 2
Fig. 2

1D periodic structures:  (a) DBR and (b) resonant cavity. One period of the structures consists of a 75 μm PET film (n THz = 1.65) and a 125 μm air gap. The 1D resonant cavity consists of two DBRs with 2.5 periods of PET–air separated by a 250 μm air gap.

Fig. 3
Fig. 3

Time-resolved waveforms and corresponding power spectra (solid curve, experiment; dotted curve, simulation) of transmitted single-cycle THz pulses through the 1D periodic structures with 5, 10, and 15 periods.

Fig. 4
Fig. 4

Time-dependent waveforms and corresponding power spectra (solid curve, experiment; dotted curve, simulation) of reflected single-cycle THz pulses from the 1D periodic structures with 5, 10, and 15 periods. The reflection angle is 45°.

Fig. 5
Fig. 5

Time-resolved waveforms and corresponding power spectra (solid curve, experiment; dotted curve, simulation) of transmitted single-cycle THz pulses through the 1D resonant cavity structure.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

50 500   μm
( < 10 2   rad )
820   nm
85   fs
76   MHz
4   nJ
30   μm
1   mm
1   mm
0.76   kHz
1 D
1 D
( 75   μm
125   μm
266   nm
( 0.3 2.5   THz )
5   mm
1.6 1.8   THz
( 0.3 3 .0   THz )
( < 0.8   THz )
n THz = 1.62
n THz = 1.80
( > 1 .4   THz )
2.03 2.29   THz
250   μm
( 1.6 1.8   THz )
( > 1 .4   THz )
22.5   GHz
13.0   GHz
( n THz = 1.65 )

Metrics