Abstract

Adapting the concept of solid immersion lenses, we numerically study a micro-optical scheme for conventional high-index and photonic-crystal waveguide coupling by using a combination of different numerical methods such as ray tracing, angular-spectrum propagation, finite-difference time-domain simulations, and finite-element-method simulations. The numerical findings are discussed by means of impedance, group- or energy-velocity, spot-size, and phase-matching criteria. When fabrication constraints for high-index immersion lenses made of silicon are taken into account, a coupling efficiency of 80% can be reached for monomode silicon-on-insulator waveguides with a quadratic cross section of the core and rectangular cross sections of moderate aspect ratio. Similar coupling efficiencies of 80% can be obtained for silicon-on-insulator photonic-crystal waveguides. Tolerances that are due to misalignments and variations of the substrate thickness of the silicon lens are discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription