Abstract

We experimentally characterize the properties of an element that generates a doughnutlike point-spread function by converting the linearly polarized incident field to radially or azimuthally polarized light utilizing space-variant inhomogeneous medium (SVIM) form-birefringent subwavelength structures. To fabricate the high-aspect-ratio SVIM structures, we developed a chemically assisted ion-beam-etching process that permits control of the fabricated form-birefringent structure profile to optimize the effect of birefringence and the impedance mismatch on the substrate–air interface. Fabricated elements perform efficient polarization conversion for incident angles as large as 30°, where the extinction ratio is found to be better than 4.5. The intensity distribution in the far field shows that our SVIM device generates a doughnut point-spread function that may prove useful for various applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Niziev and V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
    [CrossRef]
  2. S. Quabis, R. Dron, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
    [CrossRef]
  3. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
  4. M. Stalder and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1950 (1996).
  5. I. Richter, P. C. Sun, F. Xu, and Y. Fainman, "Design considerations of form birefringent microstructures," Appl. Opt. 34, 2421-2429 (1995).
  6. F. Xu, R. Tyan, P. C. Sun, C. Cheng, A. Scherer, and Y. Fainman, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995).
  7. W. Nakagawa, R. Tyan, P. C. Sun, and Y. Fainman, "Ultrashort pulse propagation in near-field periodic diffractive structures by use of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 18, 1072-1081 (2001).
  8. C. Gu and P. Yeh, "Form birefringence dispersion in periodic layered media," Opt. Lett. 21, 504-506 (1996).
  9. S. Y. Chou and W. Deng, "Subwavelength amorphous silicon transmission gratings and applications in polarizers and wave plates," Appl. Phys. Lett. 67, 742-744 (1995).
    [CrossRef]
  10. G. P. Nordin and P. C. Deguzman, "Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region," Opt. Express 5, 163-168 (1999).
  11. F. Xu, J. Ford, and Y. Fainman, "Single-substrate birefringent computer-generated holograms," Opt. Lett. 21, 516-518 (1996).
  12. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
  13. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, "Engineering space-variant inhomogeneous media for polarization control," Opt. Lett. 29, 1718-1720 (2004).
    [CrossRef]
  14. J. D. Chinn, I. Adesida, and E. D. Wolf, "Profile formation in CAIBE," Solid State Technol. 27, 123-129 (1984).
  15. K. R. Milkove, J. A. Coffin, and C. Dziobkowski, "Effects of argon addition to a platinum dry etch process," J. Vac. Sci. Technol. A 16, 1483-1488 (1998).
    [CrossRef]
  16. W. J. Zubrzycki, G. A. Vawter, and J. R. Wendt, "High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching," J. Vac. Sci. Technol. B 17, 2740-2744 (1999).
    [CrossRef]
  17. D. H. Raguin and G. M. Morris, "Antireflection structured surfaces for the infrared spectral region," Appl. Opt. 32, 1154-1167 (1993).
  18. U. Levy and Y Fainman, "Dispersion properties of inhomogeneous nanostructures," J. Opt. Soc. Am. 21, 881-889 (2004).
    [CrossRef]
  19. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
  20. I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994).
    [CrossRef]
  21. A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
    [CrossRef]
  22. M. Chabloz, Y. Sakai, T. Matsuura, and K. Tsutsumi, "Improvement of sidewall roughness in deep silicon etching," Microsyst. Technol. 6, 86-89 (2000).
    [CrossRef]
  23. C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696-2700 (1995).
    [CrossRef]
  24. G. A. Lincoln, M. W. Geis, S. Pang, and N. N. Efremow, "Large area ion-beam-assisted etching of GaAs with high etch rates and controlled anisotropy," J. Vac. Sci. Technol. B 1, 1043-1046 (1983).
    [CrossRef]

2004 (2)

U. Levy and Y Fainman, "Dispersion properties of inhomogeneous nanostructures," J. Opt. Soc. Am. 21, 881-889 (2004).
[CrossRef]

U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, "Engineering space-variant inhomogeneous media for polarization control," Opt. Lett. 29, 1718-1720 (2004).
[CrossRef]

2002 (1)

2001 (1)

2000 (2)

M. Chabloz, Y. Sakai, T. Matsuura, and K. Tsutsumi, "Improvement of sidewall roughness in deep silicon etching," Microsyst. Technol. 6, 86-89 (2000).
[CrossRef]

S. Quabis, R. Dron, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

1999 (3)

V. G. Niziev and V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

W. J. Zubrzycki, G. A. Vawter, and J. R. Wendt, "High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching," J. Vac. Sci. Technol. B 17, 2740-2744 (1999).
[CrossRef]

G. P. Nordin and P. C. Deguzman, "Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region," Opt. Express 5, 163-168 (1999).

1998 (1)

K. R. Milkove, J. A. Coffin, and C. Dziobkowski, "Effects of argon addition to a platinum dry etch process," J. Vac. Sci. Technol. A 16, 1483-1488 (1998).
[CrossRef]

1996 (3)

1995 (4)

I. Richter, P. C. Sun, F. Xu, and Y. Fainman, "Design considerations of form birefringent microstructures," Appl. Opt. 34, 2421-2429 (1995).

F. Xu, R. Tyan, P. C. Sun, C. Cheng, A. Scherer, and Y. Fainman, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995).

S. Y. Chou and W. Deng, "Subwavelength amorphous silicon transmission gratings and applications in polarizers and wave plates," Appl. Phys. Lett. 67, 742-744 (1995).
[CrossRef]

C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696-2700 (1995).
[CrossRef]

1994 (1)

I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994).
[CrossRef]

1993 (1)

1990 (1)

1989 (1)

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

1984 (1)

J. D. Chinn, I. Adesida, and E. D. Wolf, "Profile formation in CAIBE," Solid State Technol. 27, 123-129 (1984).

1983 (1)

G. A. Lincoln, M. W. Geis, S. Pang, and N. N. Efremow, "Large area ion-beam-assisted etching of GaAs with high etch rates and controlled anisotropy," J. Vac. Sci. Technol. B 1, 1043-1046 (1983).
[CrossRef]

1982 (1)

Adesida, I.

I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994).
[CrossRef]

J. D. Chinn, I. Adesida, and E. D. Wolf, "Profile formation in CAIBE," Solid State Technol. 27, 123-129 (1984).

Biener, G.

Bomzon, Z.

Chabloz, M.

M. Chabloz, Y. Sakai, T. Matsuura, and K. Tsutsumi, "Improvement of sidewall roughness in deep silicon etching," Microsyst. Technol. 6, 86-89 (2000).
[CrossRef]

Cheng, C.

Cheng, C. C.

C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696-2700 (1995).
[CrossRef]

Chinn, J. D.

J. D. Chinn, I. Adesida, and E. D. Wolf, "Profile formation in CAIBE," Solid State Technol. 27, 123-129 (1984).

Chou, S. Y.

S. Y. Chou and W. Deng, "Subwavelength amorphous silicon transmission gratings and applications in polarizers and wave plates," Appl. Phys. Lett. 67, 742-744 (1995).
[CrossRef]

Coffin, J. A.

K. R. Milkove, J. A. Coffin, and C. Dziobkowski, "Effects of argon addition to a platinum dry etch process," J. Vac. Sci. Technol. A 16, 1483-1488 (1998).
[CrossRef]

Deguzman, P. C.

Deng, W.

S. Y. Chou and W. Deng, "Subwavelength amorphous silicon transmission gratings and applications in polarizers and wave plates," Appl. Phys. Lett. 67, 742-744 (1995).
[CrossRef]

Dow, T.

I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994).
[CrossRef]

Dron, R.

S. Quabis, R. Dron, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Dziobkowski, C.

K. R. Milkove, J. A. Coffin, and C. Dziobkowski, "Effects of argon addition to a platinum dry etch process," J. Vac. Sci. Technol. A 16, 1483-1488 (1998).
[CrossRef]

Eberler, M.

S. Quabis, R. Dron, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Efremow, N. N.

G. A. Lincoln, M. W. Geis, S. Pang, and N. N. Efremow, "Large area ion-beam-assisted etching of GaAs with high etch rates and controlled anisotropy," J. Vac. Sci. Technol. B 1, 1043-1046 (1983).
[CrossRef]

Fainman, Y

U. Levy and Y Fainman, "Dispersion properties of inhomogeneous nanostructures," J. Opt. Soc. Am. 21, 881-889 (2004).
[CrossRef]

Fainman, Y.

Florez, L. T.

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

Ford, D. H.

Ford, J.

Gaylord, T. K.

Geis, M. W.

G. A. Lincoln, M. W. Geis, S. Pang, and N. N. Efremow, "Large area ion-beam-assisted etching of GaAs with high etch rates and controlled anisotropy," J. Vac. Sci. Technol. B 1, 1043-1046 (1983).
[CrossRef]

Glockl, O.

S. Quabis, R. Dron, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Gu, C.

Harbison, J. P.

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

Hasman, E.

Jewell, J. L.

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

Khan, M. Asif

I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994).
[CrossRef]

Kimura, W. D.

Kleiner, V.

Kuznia, J. N.

I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994).
[CrossRef]

Lee, Y. H.

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dron, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Levy, U.

U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, "Engineering space-variant inhomogeneous media for polarization control," Opt. Lett. 29, 1718-1720 (2004).
[CrossRef]

U. Levy and Y Fainman, "Dispersion properties of inhomogeneous nanostructures," J. Opt. Soc. Am. 21, 881-889 (2004).
[CrossRef]

Lincoln, G. A.

G. A. Lincoln, M. W. Geis, S. Pang, and N. N. Efremow, "Large area ion-beam-assisted etching of GaAs with high etch rates and controlled anisotropy," J. Vac. Sci. Technol. B 1, 1043-1046 (1983).
[CrossRef]

Matsuura, T.

M. Chabloz, Y. Sakai, T. Matsuura, and K. Tsutsumi, "Improvement of sidewall roughness in deep silicon etching," Microsyst. Technol. 6, 86-89 (2000).
[CrossRef]

Milkove, K. R.

K. R. Milkove, J. A. Coffin, and C. Dziobkowski, "Effects of argon addition to a platinum dry etch process," J. Vac. Sci. Technol. A 16, 1483-1488 (1998).
[CrossRef]

Moharam, M. G.

Morris, G. M.

Nakagawa, W.

Nesterov, V.

V. G. Niziev and V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev and V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

Nordin, G. P.

Olson, D. T.

I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994).
[CrossRef]

Pang, L.

Pang, S.

G. A. Lincoln, M. W. Geis, S. Pang, and N. N. Efremow, "Large area ion-beam-assisted etching of GaAs with high etch rates and controlled anisotropy," J. Vac. Sci. Technol. B 1, 1043-1046 (1983).
[CrossRef]

Ping, A. T.

I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994).
[CrossRef]

Quabis, S.

S. Quabis, R. Dron, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Raguin, D. H.

Richter, I.

Sakai, Y.

M. Chabloz, Y. Sakai, T. Matsuura, and K. Tsutsumi, "Improvement of sidewall roughness in deep silicon etching," Microsyst. Technol. 6, 86-89 (2000).
[CrossRef]

Schadt, M.

Scherer, A.

C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696-2700 (1995).
[CrossRef]

F. Xu, R. Tyan, P. C. Sun, C. Cheng, A. Scherer, and Y. Fainman, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995).

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

Stalder, M.

Sun, P. C.

Tidwell, S. C.

Tsai, C. H.

Tsutsumi, K.

M. Chabloz, Y. Sakai, T. Matsuura, and K. Tsutsumi, "Improvement of sidewall roughness in deep silicon etching," Microsyst. Technol. 6, 86-89 (2000).
[CrossRef]

Tyan, R.

Vawter, G. A.

W. J. Zubrzycki, G. A. Vawter, and J. R. Wendt, "High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching," J. Vac. Sci. Technol. B 17, 2740-2744 (1999).
[CrossRef]

Wendt, J. R.

W. J. Zubrzycki, G. A. Vawter, and J. R. Wendt, "High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching," J. Vac. Sci. Technol. B 17, 2740-2744 (1999).
[CrossRef]

Wolf, E. D.

J. D. Chinn, I. Adesida, and E. D. Wolf, "Profile formation in CAIBE," Solid State Technol. 27, 123-129 (1984).

Xu, F.

Yeh, P.

Youtsey, C.

I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994).
[CrossRef]

Zubrzycki, W. J.

W. J. Zubrzycki, G. A. Vawter, and J. R. Wendt, "High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching," J. Vac. Sci. Technol. B 17, 2740-2744 (1999).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

S. Y. Chou and W. Deng, "Subwavelength amorphous silicon transmission gratings and applications in polarizers and wave plates," Appl. Phys. Lett. 67, 742-744 (1995).
[CrossRef]

I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994).
[CrossRef]

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

J. Opt. Soc. Am. (2)

M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).

U. Levy and Y Fainman, "Dispersion properties of inhomogeneous nanostructures," J. Opt. Soc. Am. 21, 881-889 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

V. G. Niziev and V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

J. Vac. Sci. Technol. A (1)

K. R. Milkove, J. A. Coffin, and C. Dziobkowski, "Effects of argon addition to a platinum dry etch process," J. Vac. Sci. Technol. A 16, 1483-1488 (1998).
[CrossRef]

J. Vac. Sci. Technol. B (3)

W. J. Zubrzycki, G. A. Vawter, and J. R. Wendt, "High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching," J. Vac. Sci. Technol. B 17, 2740-2744 (1999).
[CrossRef]

C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696-2700 (1995).
[CrossRef]

G. A. Lincoln, M. W. Geis, S. Pang, and N. N. Efremow, "Large area ion-beam-assisted etching of GaAs with high etch rates and controlled anisotropy," J. Vac. Sci. Technol. B 1, 1043-1046 (1983).
[CrossRef]

Microsyst. Technol. (1)

M. Chabloz, Y. Sakai, T. Matsuura, and K. Tsutsumi, "Improvement of sidewall roughness in deep silicon etching," Microsyst. Technol. 6, 86-89 (2000).
[CrossRef]

Opt. Commun. (1)

S. Quabis, R. Dron, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Solid State Technol. (1)

J. D. Chinn, I. Adesida, and E. D. Wolf, "Profile formation in CAIBE," Solid State Technol. 27, 123-129 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram describing polarization transformation: (a) description of the geometry definitions, (b) definition of a radial polarization state, (c) definition of an azimuthal polarization state.

Fig. 2
Fig. 2

Top, polarization conversion efficiency versus normalized Gaussian beam width: 1, half-wave-plate approach; 2, quarter-wave-plate approach. Both values approach the asymptotic limit of plane-wave illumination as the normalized beam width increases. Bottom, ratio of efficiency between the two approaches versus the normalized Gaussian beam width. The ratio increases with a decrease in the normalized Gaussian beam width.

Fig. 3
Fig. 3

Chamber diagram of a CAIBE system. The physical etching mechanism provided by argon-ion bombardment and the chemical etching mechanism provided by the Cl2 reaction can be controlled independently.

Fig. 4
Fig. 4

SEM pictures of the testing etched sample profiles demonstrating the effects of excess physical or chemical mechanisms. (a) Excess physical bombardment eroding the mask considerably and causing overcut etch profiles. When overpowered, it may also cause surface damage to the sample. (b) Excess chemical reaction enhancing surface redeposition randomly all over the sample and increasing the surface roughness. Strong redeposition can dominate and inhibit the etching process.

Fig. 5
Fig. 5

SEM pictures of the cross sections of the etched sample profiles. The profile can be controlled with a degree of collimation of the ion beam: (a) Balanced recipe results in a rectangular etch profile; (b) recipe with extra lateral physical bombardment enhancing the mask erosion sideways, resulting in a triangular etch profile.

Fig. 6
Fig. 6

Optical setup for the characterization of polarization conversion. A horizontally linear polarized beam retrieved from a CO2 laser is expanded and collimated to cover the whole SVIM device. To measure the polarization states of the output, the image for analysis is acquired on the IR camera after a horizontally polarized analyzer.

Fig. 7
Fig. 7

Angular dependence of normalized transmitted intensity after the polarization analyzer, where θ is the angle to the horizontal, linearly polarized input. The experimental data are then obtained by digital integration across the radial coordinate of the image obtained with the setup in Fig. 6. The result agrees with the theoretical curve.

Fig. 8
Fig. 8

Experimentally obtained image showing polarization conversion for various incident angles. A crossed analyzer was used to convert the polarization transformation into amplitude modulation: (a) 0°, (b) 10°, (c) 20°, (d) 30°.

Fig. 9
Fig. 9

Cross sections of the far-field distributions of the SVIM element.

Tables (1)

Tables Icon

Table 1 Measured Transmission on Four Different Samples over Different Regions a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

K g = 2 π Λ g ( r , θ ) [ cos ( θ 2 ) r ^ sin ( θ 2 ) θ ^ ] = 2 π a 0 r [ cos ( θ 2 ) r ^ sin ( θ 2 ) θ ^ ] ,
r in = r out ( Λ g , min / Λ g , max ) 2 ,
r in = r out ( Λ g , min / Λ g , max ) .
η = 2 π r in r out exp [ 2 ( r ω ) 2 ] r d r 2 π 0 r out exp [ 2 ( r ω ) 2 ] r d r = exp [ 2 ( r in ω ) 2 ] exp [ 2 ( r out ω ) 2 ] 1 exp [ 2 ( r out ω ) 2 ] ,
η 1 = exp [ 2 ( r out ω ) 2 ( Λ g , min Λ g , max ) 4 ] exp [ 2 ( r out ω ) 2 ] 1 exp [ 2 ( r out ω ) 2 ] ,
η 2 = exp [ 2 ( r out ω ) 2 ( Λ g , min Λ g , max ) 2 ] exp [ 2 ( r out ω ) 2 ] 1 exp [ 2 ( r out ω ) 2 ] ,

Metrics