Abstract

Optical microelectromechanical system pressure sensors based on the principle of Fabry–Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10  μm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8  μm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry–Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Miller, M. G. Allen, E. Arkilic, K. S. Breuer, and M. A. Schmidt, "Fabry-Perot pressure sensor arrays for imaging surface pressure distributions," in Proceedings of International Conference on Solid-State Sensors and Actuators (Kluwer, 1997), pp. 1469-1472.
    [CrossRef]
  2. J. Zhou, S. Dasgupta, H. Kobayashi, J. M. Wolff, H. E. Jackson, and J. T. Boyd, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
    [CrossRef]
  3. W. Li, D. C. Abeysinghe, and J. T. Boyd, "Multiplexed sensor system for simultaneous measurement of pressure and temperature," Opt. Eng. 43, 148-156 (2004).
    [CrossRef]
  4. Z. Xiao, U. O. Engström, and N. Vidovic, "Diaphragm deflection of silicon interferometer structures used as pressure sensors," Sens. Actuators A 58, 99-107 (1997).
    [CrossRef]
  5. G. Beheim, "Fiber-optic temperature sensor using a thin film Fabry-Perot interferometer," NASA Tech. Memo. TM-107459 (Lewis Research Center, 1997).
  6. Y. Huang, S. Ergun, E. Haeggström, M. H. Badi, and B. T. Khuri-Yakub, "Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology," J. Microelctromech. Syst. 12, 128-137 (2003).
    [CrossRef]
  7. D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, "Novel MEMS pressure and temperature sensors fabricated on optical fibers," J. Micromech. Microeng. 12, 229-135 (2002).
    [CrossRef]
  8. A. Saran, D. C. Abeysinghe, R. Flenniken, and J. T. Boyd, "Anodic bonding of optical fibers-to-silicon for integrating MEMS devices and optical fibers," J. Micromech. Microeng. 13, 346-351 (2003).
    [CrossRef]
  9. A. Yariv, Quantum Electronics, 4th ed. (Wiley, 1998).
  10. A. Richard, "Anodic bonding for microsystem applications," Licentiate thesis (Uppsala University, 2000).
  11. G. Beheim, K. Fritsch, and R. N. Poorman, "Fiber-linked interferometric pressure sensor," Rev. Sci. Instrum. 58, 1655-1659 (1987).
    [CrossRef]
  12. A. Saran, "Development of MEMS based Fabry-Perot pressure sensor and non-adhesive integration on optical fiber by anodic bonding," Ph.D. dissertation (University of Cincinnati, 2004).
  13. D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, and D. Klotzkin, "A novel technique for high-strength direct fiber-to-Si submount attachment using field-assisted anodic bonding for optoelectronics packaging," IEEE Photon. Technol. Lett. 16, 2150-2152 (2004).
    [CrossRef]
  14. D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, A. Saran, J. T. Boyd, and D. Klotzkin, "Wired fiber: field assisted bonding of fiber to silicon submounts for optoelectronics for epoxy-free passive alignment and low-cost packaging," invited talk at the Great Lakes Photonics Symposium, Cleveland, Ohio 7-11 June 2004.
  15. F. Perennes, P. C. Beard, and T. N. Mills, "Analysis of a low-finesse Fabry-Perot sensing interferometer illuminated by a multimode optical fiber," Appl. Opt. 38, 7026-7034 (1999).
    [CrossRef]
  16. R. A. Wolthius, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
    [CrossRef]

2004 (2)

W. Li, D. C. Abeysinghe, and J. T. Boyd, "Multiplexed sensor system for simultaneous measurement of pressure and temperature," Opt. Eng. 43, 148-156 (2004).
[CrossRef]

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, and D. Klotzkin, "A novel technique for high-strength direct fiber-to-Si submount attachment using field-assisted anodic bonding for optoelectronics packaging," IEEE Photon. Technol. Lett. 16, 2150-2152 (2004).
[CrossRef]

2003 (2)

A. Saran, D. C. Abeysinghe, R. Flenniken, and J. T. Boyd, "Anodic bonding of optical fibers-to-silicon for integrating MEMS devices and optical fibers," J. Micromech. Microeng. 13, 346-351 (2003).
[CrossRef]

Y. Huang, S. Ergun, E. Haeggström, M. H. Badi, and B. T. Khuri-Yakub, "Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology," J. Microelctromech. Syst. 12, 128-137 (2003).
[CrossRef]

2002 (1)

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, "Novel MEMS pressure and temperature sensors fabricated on optical fibers," J. Micromech. Microeng. 12, 229-135 (2002).
[CrossRef]

2001 (1)

J. Zhou, S. Dasgupta, H. Kobayashi, J. M. Wolff, H. E. Jackson, and J. T. Boyd, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

1999 (1)

1997 (1)

Z. Xiao, U. O. Engström, and N. Vidovic, "Diaphragm deflection of silicon interferometer structures used as pressure sensors," Sens. Actuators A 58, 99-107 (1997).
[CrossRef]

1991 (1)

R. A. Wolthius, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
[CrossRef]

1987 (1)

G. Beheim, K. Fritsch, and R. N. Poorman, "Fiber-linked interferometric pressure sensor," Rev. Sci. Instrum. 58, 1655-1659 (1987).
[CrossRef]

Abeysinghe, D. C.

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, and D. Klotzkin, "A novel technique for high-strength direct fiber-to-Si submount attachment using field-assisted anodic bonding for optoelectronics packaging," IEEE Photon. Technol. Lett. 16, 2150-2152 (2004).
[CrossRef]

W. Li, D. C. Abeysinghe, and J. T. Boyd, "Multiplexed sensor system for simultaneous measurement of pressure and temperature," Opt. Eng. 43, 148-156 (2004).
[CrossRef]

A. Saran, D. C. Abeysinghe, R. Flenniken, and J. T. Boyd, "Anodic bonding of optical fibers-to-silicon for integrating MEMS devices and optical fibers," J. Micromech. Microeng. 13, 346-351 (2003).
[CrossRef]

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, "Novel MEMS pressure and temperature sensors fabricated on optical fibers," J. Micromech. Microeng. 12, 229-135 (2002).
[CrossRef]

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, A. Saran, J. T. Boyd, and D. Klotzkin, "Wired fiber: field assisted bonding of fiber to silicon submounts for optoelectronics for epoxy-free passive alignment and low-cost packaging," invited talk at the Great Lakes Photonics Symposium, Cleveland, Ohio 7-11 June 2004.

Afromowitz, M. A.

R. A. Wolthius, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
[CrossRef]

Allen, M. G.

M. F. Miller, M. G. Allen, E. Arkilic, K. S. Breuer, and M. A. Schmidt, "Fabry-Perot pressure sensor arrays for imaging surface pressure distributions," in Proceedings of International Conference on Solid-State Sensors and Actuators (Kluwer, 1997), pp. 1469-1472.
[CrossRef]

Arkilic, E.

M. F. Miller, M. G. Allen, E. Arkilic, K. S. Breuer, and M. A. Schmidt, "Fabry-Perot pressure sensor arrays for imaging surface pressure distributions," in Proceedings of International Conference on Solid-State Sensors and Actuators (Kluwer, 1997), pp. 1469-1472.
[CrossRef]

Badi, M. H.

Y. Huang, S. Ergun, E. Haeggström, M. H. Badi, and B. T. Khuri-Yakub, "Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology," J. Microelctromech. Syst. 12, 128-137 (2003).
[CrossRef]

Balagopal, A.

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, and D. Klotzkin, "A novel technique for high-strength direct fiber-to-Si submount attachment using field-assisted anodic bonding for optoelectronics packaging," IEEE Photon. Technol. Lett. 16, 2150-2152 (2004).
[CrossRef]

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, A. Saran, J. T. Boyd, and D. Klotzkin, "Wired fiber: field assisted bonding of fiber to silicon submounts for optoelectronics for epoxy-free passive alignment and low-cost packaging," invited talk at the Great Lakes Photonics Symposium, Cleveland, Ohio 7-11 June 2004.

Beard, P. C.

Beheim, G.

G. Beheim, K. Fritsch, and R. N. Poorman, "Fiber-linked interferometric pressure sensor," Rev. Sci. Instrum. 58, 1655-1659 (1987).
[CrossRef]

G. Beheim, "Fiber-optic temperature sensor using a thin film Fabry-Perot interferometer," NASA Tech. Memo. TM-107459 (Lewis Research Center, 1997).

Boyd, J. T.

W. Li, D. C. Abeysinghe, and J. T. Boyd, "Multiplexed sensor system for simultaneous measurement of pressure and temperature," Opt. Eng. 43, 148-156 (2004).
[CrossRef]

A. Saran, D. C. Abeysinghe, R. Flenniken, and J. T. Boyd, "Anodic bonding of optical fibers-to-silicon for integrating MEMS devices and optical fibers," J. Micromech. Microeng. 13, 346-351 (2003).
[CrossRef]

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, "Novel MEMS pressure and temperature sensors fabricated on optical fibers," J. Micromech. Microeng. 12, 229-135 (2002).
[CrossRef]

J. Zhou, S. Dasgupta, H. Kobayashi, J. M. Wolff, H. E. Jackson, and J. T. Boyd, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, A. Saran, J. T. Boyd, and D. Klotzkin, "Wired fiber: field assisted bonding of fiber to silicon submounts for optoelectronics for epoxy-free passive alignment and low-cost packaging," invited talk at the Great Lakes Photonics Symposium, Cleveland, Ohio 7-11 June 2004.

Breuer, K. S.

M. F. Miller, M. G. Allen, E. Arkilic, K. S. Breuer, and M. A. Schmidt, "Fabry-Perot pressure sensor arrays for imaging surface pressure distributions," in Proceedings of International Conference on Solid-State Sensors and Actuators (Kluwer, 1997), pp. 1469-1472.
[CrossRef]

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, "Novel MEMS pressure and temperature sensors fabricated on optical fibers," J. Micromech. Microeng. 12, 229-135 (2002).
[CrossRef]

J. Zhou, S. Dasgupta, H. Kobayashi, J. M. Wolff, H. E. Jackson, and J. T. Boyd, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

Engström, U. O.

Z. Xiao, U. O. Engström, and N. Vidovic, "Diaphragm deflection of silicon interferometer structures used as pressure sensors," Sens. Actuators A 58, 99-107 (1997).
[CrossRef]

Ergun, S.

Y. Huang, S. Ergun, E. Haeggström, M. H. Badi, and B. T. Khuri-Yakub, "Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology," J. Microelctromech. Syst. 12, 128-137 (2003).
[CrossRef]

Flenniken, R.

A. Saran, D. C. Abeysinghe, R. Flenniken, and J. T. Boyd, "Anodic bonding of optical fibers-to-silicon for integrating MEMS devices and optical fibers," J. Micromech. Microeng. 13, 346-351 (2003).
[CrossRef]

Fritsch, K.

G. Beheim, K. Fritsch, and R. N. Poorman, "Fiber-linked interferometric pressure sensor," Rev. Sci. Instrum. 58, 1655-1659 (1987).
[CrossRef]

Haeggström, E.

Y. Huang, S. Ergun, E. Haeggström, M. H. Badi, and B. T. Khuri-Yakub, "Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology," J. Microelctromech. Syst. 12, 128-137 (2003).
[CrossRef]

Hartl, J. C.

R. A. Wolthius, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
[CrossRef]

Huang, Y.

Y. Huang, S. Ergun, E. Haeggström, M. H. Badi, and B. T. Khuri-Yakub, "Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology," J. Microelctromech. Syst. 12, 128-137 (2003).
[CrossRef]

Jackson, H. E.

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, "Novel MEMS pressure and temperature sensors fabricated on optical fibers," J. Micromech. Microeng. 12, 229-135 (2002).
[CrossRef]

J. Zhou, S. Dasgupta, H. Kobayashi, J. M. Wolff, H. E. Jackson, and J. T. Boyd, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

Khuri-Yakub, B. T.

Y. Huang, S. Ergun, E. Haeggström, M. H. Badi, and B. T. Khuri-Yakub, "Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology," J. Microelctromech. Syst. 12, 128-137 (2003).
[CrossRef]

Klotzkin, D.

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, and D. Klotzkin, "A novel technique for high-strength direct fiber-to-Si submount attachment using field-assisted anodic bonding for optoelectronics packaging," IEEE Photon. Technol. Lett. 16, 2150-2152 (2004).
[CrossRef]

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, A. Saran, J. T. Boyd, and D. Klotzkin, "Wired fiber: field assisted bonding of fiber to silicon submounts for optoelectronics for epoxy-free passive alignment and low-cost packaging," invited talk at the Great Lakes Photonics Symposium, Cleveland, Ohio 7-11 June 2004.

Kobayashi, H.

J. Zhou, S. Dasgupta, H. Kobayashi, J. M. Wolff, H. E. Jackson, and J. T. Boyd, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

Li, W.

W. Li, D. C. Abeysinghe, and J. T. Boyd, "Multiplexed sensor system for simultaneous measurement of pressure and temperature," Opt. Eng. 43, 148-156 (2004).
[CrossRef]

Miller, M. F.

M. F. Miller, M. G. Allen, E. Arkilic, K. S. Breuer, and M. A. Schmidt, "Fabry-Perot pressure sensor arrays for imaging surface pressure distributions," in Proceedings of International Conference on Solid-State Sensors and Actuators (Kluwer, 1997), pp. 1469-1472.
[CrossRef]

Mills, T. N.

Mitchell, G. L.

R. A. Wolthius, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
[CrossRef]

Mu, H.

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, and D. Klotzkin, "A novel technique for high-strength direct fiber-to-Si submount attachment using field-assisted anodic bonding for optoelectronics packaging," IEEE Photon. Technol. Lett. 16, 2150-2152 (2004).
[CrossRef]

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, A. Saran, J. T. Boyd, and D. Klotzkin, "Wired fiber: field assisted bonding of fiber to silicon submounts for optoelectronics for epoxy-free passive alignment and low-cost packaging," invited talk at the Great Lakes Photonics Symposium, Cleveland, Ohio 7-11 June 2004.

Perennes, F.

Poorman, R. N.

G. Beheim, K. Fritsch, and R. N. Poorman, "Fiber-linked interferometric pressure sensor," Rev. Sci. Instrum. 58, 1655-1659 (1987).
[CrossRef]

Ranatunga, V.

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, and D. Klotzkin, "A novel technique for high-strength direct fiber-to-Si submount attachment using field-assisted anodic bonding for optoelectronics packaging," IEEE Photon. Technol. Lett. 16, 2150-2152 (2004).
[CrossRef]

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, A. Saran, J. T. Boyd, and D. Klotzkin, "Wired fiber: field assisted bonding of fiber to silicon submounts for optoelectronics for epoxy-free passive alignment and low-cost packaging," invited talk at the Great Lakes Photonics Symposium, Cleveland, Ohio 7-11 June 2004.

Richard, A.

A. Richard, "Anodic bonding for microsystem applications," Licentiate thesis (Uppsala University, 2000).

Saaski, E.

R. A. Wolthius, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
[CrossRef]

Saran, A.

A. Saran, D. C. Abeysinghe, R. Flenniken, and J. T. Boyd, "Anodic bonding of optical fibers-to-silicon for integrating MEMS devices and optical fibers," J. Micromech. Microeng. 13, 346-351 (2003).
[CrossRef]

A. Saran, "Development of MEMS based Fabry-Perot pressure sensor and non-adhesive integration on optical fiber by anodic bonding," Ph.D. dissertation (University of Cincinnati, 2004).

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, A. Saran, J. T. Boyd, and D. Klotzkin, "Wired fiber: field assisted bonding of fiber to silicon submounts for optoelectronics for epoxy-free passive alignment and low-cost packaging," invited talk at the Great Lakes Photonics Symposium, Cleveland, Ohio 7-11 June 2004.

Schmidt, M. A.

M. F. Miller, M. G. Allen, E. Arkilic, K. S. Breuer, and M. A. Schmidt, "Fabry-Perot pressure sensor arrays for imaging surface pressure distributions," in Proceedings of International Conference on Solid-State Sensors and Actuators (Kluwer, 1997), pp. 1469-1472.
[CrossRef]

Vidovic, N.

Z. Xiao, U. O. Engström, and N. Vidovic, "Diaphragm deflection of silicon interferometer structures used as pressure sensors," Sens. Actuators A 58, 99-107 (1997).
[CrossRef]

Wolff, J. M.

J. Zhou, S. Dasgupta, H. Kobayashi, J. M. Wolff, H. E. Jackson, and J. T. Boyd, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

Wolthius, R. A.

R. A. Wolthius, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
[CrossRef]

Xiao, Z.

Z. Xiao, U. O. Engström, and N. Vidovic, "Diaphragm deflection of silicon interferometer structures used as pressure sensors," Sens. Actuators A 58, 99-107 (1997).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics, 4th ed. (Wiley, 1998).

Zhou, J.

J. Zhou, S. Dasgupta, H. Kobayashi, J. M. Wolff, H. E. Jackson, and J. T. Boyd, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, and D. Klotzkin, "A novel technique for high-strength direct fiber-to-Si submount attachment using field-assisted anodic bonding for optoelectronics packaging," IEEE Photon. Technol. Lett. 16, 2150-2152 (2004).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. A. Wolthius, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, "Development of medical pressure and temperature sensors employing optical spectrum modulation," IEEE Trans. Biomed. Eng. 38, 974-981 (1991).
[CrossRef]

J. Microelctromech. Syst. (1)

Y. Huang, S. Ergun, E. Haeggström, M. H. Badi, and B. T. Khuri-Yakub, "Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology," J. Microelctromech. Syst. 12, 128-137 (2003).
[CrossRef]

J. Micromech. Microeng. (2)

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, "Novel MEMS pressure and temperature sensors fabricated on optical fibers," J. Micromech. Microeng. 12, 229-135 (2002).
[CrossRef]

A. Saran, D. C. Abeysinghe, R. Flenniken, and J. T. Boyd, "Anodic bonding of optical fibers-to-silicon for integrating MEMS devices and optical fibers," J. Micromech. Microeng. 13, 346-351 (2003).
[CrossRef]

Opt. Eng. (2)

J. Zhou, S. Dasgupta, H. Kobayashi, J. M. Wolff, H. E. Jackson, and J. T. Boyd, "Optically interrogated MEMS pressure sensors for propulsion applications," Opt. Eng. 40, 598-604 (2001).
[CrossRef]

W. Li, D. C. Abeysinghe, and J. T. Boyd, "Multiplexed sensor system for simultaneous measurement of pressure and temperature," Opt. Eng. 43, 148-156 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Beheim, K. Fritsch, and R. N. Poorman, "Fiber-linked interferometric pressure sensor," Rev. Sci. Instrum. 58, 1655-1659 (1987).
[CrossRef]

Sens. Actuators A (1)

Z. Xiao, U. O. Engström, and N. Vidovic, "Diaphragm deflection of silicon interferometer structures used as pressure sensors," Sens. Actuators A 58, 99-107 (1997).
[CrossRef]

Other (6)

G. Beheim, "Fiber-optic temperature sensor using a thin film Fabry-Perot interferometer," NASA Tech. Memo. TM-107459 (Lewis Research Center, 1997).

A. Yariv, Quantum Electronics, 4th ed. (Wiley, 1998).

A. Richard, "Anodic bonding for microsystem applications," Licentiate thesis (Uppsala University, 2000).

A. Saran, "Development of MEMS based Fabry-Perot pressure sensor and non-adhesive integration on optical fiber by anodic bonding," Ph.D. dissertation (University of Cincinnati, 2004).

D. C. Abeysinghe, V. Ranatunga, A. Balagopal, H. Mu, A. Saran, J. T. Boyd, and D. Klotzkin, "Wired fiber: field assisted bonding of fiber to silicon submounts for optoelectronics for epoxy-free passive alignment and low-cost packaging," invited talk at the Great Lakes Photonics Symposium, Cleveland, Ohio 7-11 June 2004.

M. F. Miller, M. G. Allen, E. Arkilic, K. S. Breuer, and M. A. Schmidt, "Fabry-Perot pressure sensor arrays for imaging surface pressure distributions," in Proceedings of International Conference on Solid-State Sensors and Actuators (Kluwer, 1997), pp. 1469-1472.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the optical pressure based on the principle of Fabry–Perot interferometry. The sensor is fabricated and integrated onto the fiber using anodic bonding.

Fig. 2
Fig. 2

Plot of the periodic change in reflectivity RF with change in cavity depth t.

Fig. 3
Fig. 3

Plot of the predicted membrane deflection and sensor response.

Fig. 4
Fig. 4

Schematic of the fabrication procedure of the Fabry–Perot MEMS pressure sensor. (a) Sputter coat Pyrex 7740, (b) lithography, (pattering of cavity), (c) wet etching to create cavity, (d) anodic bonding of membrane, (e) anodic bonding of optical fiber.

Fig. 5
Fig. 5

Schematic of the anodic bonding of optical fiber-to-sensor head by FSTS bonding.

Fig. 6
Fig. 6

Top view of the 125 μm silicon. In the center is the glass left behind after breakage of the direct silicon-to-fiber bond. High stress at the fiber interface leads to the breakage of the bond.

Fig. 7
Fig. 7

Simulated stress in the fiber when bonded to silicon directly and with a stress-reducing layer. Stress at the fiber interface when bonded with a stress-reducing layer is 50% less when compared with fiber bonded directly.

Fig. 8
Fig. 8

Optical fiber bonded to 125 μm silicon with an intermediate 10 μm stress-reducing layer with the technique of FSTS bonding.

Fig. 9
Fig. 9

Schematic of the electro-optic setup used to characterize the static response of the sensor.

Fig. 10
Fig. 10

Plot of the optical response of the sensor for a pressure range of 0–10 psi.

Fig. 11
Fig. 11

Plot of the normalized reflectivity based on the model and the experimental result.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R F = | r | 2 = | r 12 + r 23 exp ( 2 j ϕ ) 1 + r 12 r 23 exp ( 2 j ϕ ) | 2 ,
h = [ 3 R 0 4 ( 1 γ 2 ) 4 E λ 0 P max ] 1 / 3 ,
λ 0 4 t λ 0 2 2 n cavity   Δ λ LED ,
R avg = 1 Δ λ LED Δ λ LED 0 θ d R F I ( λ ) dθdλ ,

Metrics