Abstract

We present a new type of fiber Bragg grating (FBG) in which we etch the grating into the flat surface of a D-shaped optical fiber. Instead of being written in the core of the fiber, as are standard FBGs, these surface-relief FBGs are placed in the cladding above the core. These gratings are a viable alternative to standard FBGs for sensing applications. We describe the fabrication process for etching Bragg gratings into the surface of D-fibers and demonstrate their performance as temperature sensors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, 2002).
  2. E. Udd, "An overview of fiber-optic sensors," Rev. Sci. Instrum. 66, 4015-4030 (1995).
    [CrossRef]
  3. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989).
  4. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
    [CrossRef]
  5. X. C. Y. Lin and L. A. Wang, "Loss tunable long period fiber gratings made from etched corrugated structure," Electron. Lett. 35, 1872-1873 (1999).
    [CrossRef]
  6. C.-H. Lin, Q. Li, A. A. Au, Y. Jiang, E. Wu, and H. P. Lee, "Strain-induced thermally tuned long-period fiber gratings fabricated on a periodically corrugated substrate," J. Lightwave Technol. 22, 1818-1827 (2004).
    [CrossRef]
  7. Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Quian, and Y.-S. Zhang, "Bend sensor using an embedded etched fiber Bragg grating," Microwave Opt. Technol. Lett. 43, 414-417 (2004).
    [CrossRef]
  8. J. D. Freeze and R. H. Selfridge, "D-fiber holographic diffraction gratings," Opt. Eng. 32, 3267-3271 (1993).
    [CrossRef]
  9. P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, "Enhanced UV photosensitivity in boron codoped germanosilicate fibers," Electron. Lett. 29, 45-46 (1993).
  10. F. Bilodeau, J. Alber, D. C. Johnson, K. O. Hill, Y. Hibino, M. Abe, and M. Kawachi, "Photosensitization of optical fiber and silica-on-silicon/silica waveguides," Opt. Lett. 18, 953-955 (1993).
  11. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).
  12. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  13. BeamPROP User's Guide, RSoft Inc., 200 Executive Blvd., Ossining, New York.
  14. M. A. Jensen and R. H. Selfridge, "Analysis of etching induced birefringence changes in elliptic core fibers," Appl. Opt. 31, 211-216 (1992).
  15. E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
    [CrossRef]
  16. N. J. Cronin, Microwave and Optical Waveguides (Institute of Physics, 1995).

2005 (1)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

2004 (2)

C.-H. Lin, Q. Li, A. A. Au, Y. Jiang, E. Wu, and H. P. Lee, "Strain-induced thermally tuned long-period fiber gratings fabricated on a periodically corrugated substrate," J. Lightwave Technol. 22, 1818-1827 (2004).
[CrossRef]

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Quian, and Y.-S. Zhang, "Bend sensor using an embedded etched fiber Bragg grating," Microwave Opt. Technol. Lett. 43, 414-417 (2004).
[CrossRef]

2000 (1)

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

1999 (1)

X. C. Y. Lin and L. A. Wang, "Loss tunable long period fiber gratings made from etched corrugated structure," Electron. Lett. 35, 1872-1873 (1999).
[CrossRef]

1995 (1)

E. Udd, "An overview of fiber-optic sensors," Rev. Sci. Instrum. 66, 4015-4030 (1995).
[CrossRef]

1993 (3)

J. D. Freeze and R. H. Selfridge, "D-fiber holographic diffraction gratings," Opt. Eng. 32, 3267-3271 (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, "Enhanced UV photosensitivity in boron codoped germanosilicate fibers," Electron. Lett. 29, 45-46 (1993).

F. Bilodeau, J. Alber, D. C. Johnson, K. O. Hill, Y. Hibino, M. Abe, and M. Kawachi, "Photosensitization of optical fiber and silica-on-silicon/silica waveguides," Opt. Lett. 18, 953-955 (1993).

1992 (1)

M. A. Jensen and R. H. Selfridge, "Analysis of etching induced birefringence changes in elliptic core fibers," Appl. Opt. 31, 211-216 (1992).

1989 (1)

Abe, M.

Alber, J.

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, "Enhanced UV photosensitivity in boron codoped germanosilicate fibers," Electron. Lett. 29, 45-46 (1993).

Au, A. A.

Bennett, T. E.

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Bilodeau, F.

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Cronin, N. J.

N. J. Cronin, Microwave and Optical Waveguides (Institute of Physics, 1995).

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Freeze, J. D.

J. D. Freeze and R. H. Selfridge, "D-fiber holographic diffraction gratings," Opt. Eng. 32, 3267-3271 (1993).
[CrossRef]

Glenn, W. H.

Haruna, M.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Haugse, E. D.

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Hibino, Y.

Hill, K. O.

Jensen, M. A.

M. A. Jensen and R. H. Selfridge, "Analysis of etching induced birefringence changes in elliptic core fibers," Appl. Opt. 31, 211-216 (1992).

Jiang, Y.

Johnson, D. C.

Johnson, P. E.

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).

Kawachi, M.

Kranz, K. S.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, "Enhanced UV photosensitivity in boron codoped germanosilicate fibers," Electron. Lett. 29, 45-46 (1993).

Lee, H. P.

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, "Enhanced UV photosensitivity in boron codoped germanosilicate fibers," Electron. Lett. 29, 45-46 (1993).

Li, Q.

Lin, C.-H.

Lin, X. C. Y.

X. C. Y. Lin and L. A. Wang, "Loss tunable long period fiber gratings made from etched corrugated structure," Electron. Lett. 35, 1872-1873 (1999).
[CrossRef]

López-Higuera, J. M.

J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

Makino, A.

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Meltz, G.

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, "Enhanced UV photosensitivity in boron codoped germanosilicate fibers," Electron. Lett. 29, 45-46 (1993).

Morey, W. W.

Nelson, D. V.

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Nishihara, H.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).

Quian, Y.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Quian, and Y.-S. Zhang, "Bend sensor using an embedded etched fiber Bragg grating," Microwave Opt. Technol. Lett. 43, 414-417 (2004).
[CrossRef]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, "Enhanced UV photosensitivity in boron codoped germanosilicate fibers," Electron. Lett. 29, 45-46 (1993).

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Schulz, W. L.

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Seim, J. M.

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Selfridge, R. H.

J. D. Freeze and R. H. Selfridge, "D-fiber holographic diffraction gratings," Opt. Eng. 32, 3267-3271 (1993).
[CrossRef]

M. A. Jensen and R. H. Selfridge, "Analysis of etching induced birefringence changes in elliptic core fibers," Appl. Opt. 31, 211-216 (1992).

Suhara, T.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Trego, A.

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Udd, E.

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

E. Udd, "An overview of fiber-optic sensors," Rev. Sci. Instrum. 66, 4015-4030 (1995).
[CrossRef]

Walker, K. L.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, "Enhanced UV photosensitivity in boron codoped germanosilicate fibers," Electron. Lett. 29, 45-46 (1993).

Wang, L. A.

X. C. Y. Lin and L. A. Wang, "Loss tunable long period fiber gratings made from etched corrugated structure," Electron. Lett. 35, 1872-1873 (1999).
[CrossRef]

Wu, E.

Yu, Y.-S.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Quian, and Y.-S. Zhang, "Bend sensor using an embedded etched fiber Bragg grating," Microwave Opt. Technol. Lett. 43, 414-417 (2004).
[CrossRef]

Zhang, Y.-S.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Quian, and Y.-S. Zhang, "Bend sensor using an embedded etched fiber Bragg grating," Microwave Opt. Technol. Lett. 43, 414-417 (2004).
[CrossRef]

Zhao, Z.-Y.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Quian, and Y.-S. Zhang, "Bend sensor using an embedded etched fiber Bragg grating," Microwave Opt. Technol. Lett. 43, 414-417 (2004).
[CrossRef]

Zheng, W.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Quian, and Y.-S. Zhang, "Bend sensor using an embedded etched fiber Bragg grating," Microwave Opt. Technol. Lett. 43, 414-417 (2004).
[CrossRef]

Zhuo, Z.-C.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Quian, and Y.-S. Zhang, "Bend sensor using an embedded etched fiber Bragg grating," Microwave Opt. Technol. Lett. 43, 414-417 (2004).
[CrossRef]

Appl. Opt. (1)

M. A. Jensen and R. H. Selfridge, "Analysis of etching induced birefringence changes in elliptic core fibers," Appl. Opt. 31, 211-216 (1992).

Electron. Lett. (2)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, "Enhanced UV photosensitivity in boron codoped germanosilicate fibers," Electron. Lett. 29, 45-46 (1993).

X. C. Y. Lin and L. A. Wang, "Loss tunable long period fiber gratings made from etched corrugated structure," Electron. Lett. 35, 1872-1873 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Microwave Opt. Technol. Lett. (1)

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Quian, and Y.-S. Zhang, "Bend sensor using an embedded etched fiber Bragg grating," Microwave Opt. Technol. Lett. 43, 414-417 (2004).
[CrossRef]

Opt. Eng. (1)

J. D. Freeze and R. H. Selfridge, "D-fiber holographic diffraction gratings," Opt. Eng. 32, 3267-3271 (1993).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

E. Udd, W. L. Schulz, J. M. Seim, E. D. Haugse, A. Trego, P. E. Johnson, T. E. Bennett, D. V. Nelson, and A. Makino, "Multidimensional strain field measurements using fiber optic grating sensors," in Proc. SPIE 3986, 254-262 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

E. Udd, "An overview of fiber-optic sensors," Rev. Sci. Instrum. 66, 4015-4030 (1995).
[CrossRef]

Other (5)

J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

N. J. Cronin, Microwave and Optical Waveguides (Institute of Physics, 1995).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

BeamPROP User's Guide, RSoft Inc., 200 Executive Blvd., Ossining, New York.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Diagram showing the different regions of a D-shaped silica fiber.

Fig. 2
Fig. 2

Plot of the depth of the notch in the transmission spectrum of a SR FBG versus the distance from the top of the core to the flat surface of the fiber. The different curves correspond to different grating heights h and different core orientations—vertical and horizontal.

Fig. 3
Fig. 3

Diagram showing a D-fiber in three fabrication stages. The top fiber is unetched, the middle one has been etched to remove the cladding above the core, and the bottom one has had a SR grating etched into the fiber.

Fig. 4
Fig. 4

Setup used to etch individual fibers in BHF while monitoring the birefringence.

Fig. 5
Fig. 5

Plot of the output power through the analyzer versus time as a fiber is etched in BHF.

Fig. 6
Fig. 6

Lloyd's mirror arrangement used to create an optical interference pattern on the fiber.

Fig. 7
Fig. 7

SEM image of a grating etched into the flat side of a D-fiber.

Fig. 8
Fig. 8

Surface height data versus position from an AFM scan of the SR FBG shown in Fig. 7. The data were low-pass filtered to eliminate noise.

Fig. 9
Fig. 9

Plot of the transmission spectrum of a SR FBG.

Fig. 10
Fig. 10

Plot of the shift in Bragg wavelength versus temperature for a SR FBG. Insets show transmission spectra of the grating at different temperatures. The wavelength range of the insets is 1550 1555 nm .

Fig. 11
Fig. 11

Plot of the reflection spectra of a SR FBG illuminated with linearly polarized light, where the angle between the polarization axis and the flat surface of the fiber is varied. The top spectra correspond to light in which the electric field is parallel to the flat surface of the fiber ( ϕ = 0 ° ) while the bottom spectra correspond to the electric field being perpendicular to the flat surface ( ϕ = 90 ° ) .

Fig. 12
Fig. 12

Diagram showing a D-fiber illuminated by a laser after it has passed through a polarizer. The polarizer angle ϕ is varied to change the orientation of the electric field.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ B 2 N ,
Λ = λ 2 sin θ ,

Metrics