Abstract

Specular ellipsometry is a well-known and efficient technique to characterize surfaces and coatings. This technique has been extended to the measurement of scattered light. We present an experimental setup, using a polarization modulator, which permits us to characterize transition layers and roughness without a calibration procedure. Experimental results are presented concerning transition layers for damage threshold applications and for rough surfaces or bulks.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977), pp. 364-416.
  2. H. G. Tompkins, A User's Guide to Ellipsometry (Academic, 1997), pp. 1-257.
  3. D. Rönnow, S. K. Anderson, and G. A. Niklasson, 'Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,' Opt. Mater. 4, 815-821 (1995).
    [CrossRef]
  4. S. J. Fang, W. Chen, T. Yamanaka, and C. R. Helms, 'Comparison of Si surface roughness measured by atomic force microscopy and ellipsometry,' Appl. Phys. Lett. 68, 2837-2839 (1996).
    [CrossRef]
  5. S. N. Jasperson and S. E. Schnatterly, 'An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,' Rev. Sci. Instrum. 40, 761-767 (1969).
    [CrossRef]
  6. B. Drevillon, 'Phase modulated ellipsometry from the ultraviolet to the infrared: in situ application to the growth of semi-conductors,' in Progress in Crystal Growth and Characterization of Materials (Pergamon, 1993), Vol. 27, pp. 1-87.
  7. G. Videen, J.-Y. Hsu, W. S. Bickel, and W. L. Wolfe, 'Polarized light scattered from rough surfaces,' J. Opt. Soc. Am. A 9, 1111-1118 (1992).
    [CrossRef]
  8. C. Deumié, H. Giovannini, and C. Amra, 'Ellipsometry of light scattering from multilayer coatings,' Appl. Opt. 35, 5600-5608 (1996).
    [CrossRef] [PubMed]
  9. T. A. Germer and C. C. Asmail, 'Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,' Rev. Sci. Instrum. 70, 3688-3695 (1999).
    [CrossRef]
  10. C. Deumié, H. Giovannini, and C. Amra, 'Angle-resolved ellipsometry of light scattering: discrimination of surface and bulk effects in substrates and optical coatings,' Appl. Opt. 41, 3362-3369 (2002).
    [CrossRef] [PubMed]
  11. C. Deumié, R. Richier, P. Dumas, and C. Amra, 'Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,' Appl. Opt. 35, 5583-5594 (1996).
    [CrossRef] [PubMed]
  12. P. Dumas, B. Bouffakhredine, C. Amra, O. Vatel, E. André, R. Galindo, and F. Salvan, 'Quantitative microroughness using near field microscopies and optical,' Europhys. Lett. 22, 717-722 (1993).
    [CrossRef]
  13. C. Amra, 'From light scattering to the microstructure of thin film multilayers,' Appl. Opt. 32, 5481-5491 (1993).
    [CrossRef] [PubMed]
  14. R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, and L. Mattson, 'Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,' Appl. Opt. 31, 1426-1435 (1992).
  15. C. Amra, 'Light scattering from multilayer optics. Part A: Investigation tools,' J. Opt. Soc. Am. A 11, 197-210 (1994).
    [CrossRef]
  16. C. Amra, 'Light scattering from multilayer optics. Part B: Application to experiment,' J. Opt. Soc. Am. A 11, 211-226 (1994).
    [CrossRef]
  17. J. M. Elson, J. P. Rhan, and J. M. Bennet, 'Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation-length, and roughness cross-correlation properties,' Appl. Opt. 22, 3207-3219 (1983).
    [CrossRef] [PubMed]
  18. J. M. Elson, J. P. Rahn, and J. M. Bennett, 'Light scattering from multilayer optics: comparison of theory and experiment,' Appl. Opt. 19, 669-679 (1980).
    [CrossRef] [PubMed]
  19. O. Gilbert, C. Deumié, and C. Amra, 'Angle-resolved ellipsometry of scattering patterns from arbitrary surfaces and bulks,' Opt. Express 13, 2403-2418 (2005).
    [CrossRef] [PubMed]
  20. L. Gallais and J. Y. Natoli, 'Optimized metrology for laser damage measurement--application to multiparameter study,' Appl. Opt. 42, 960-971 (2003).
    [CrossRef] [PubMed]
  21. L. Gallais 'Endommagement laser dans les composants optiques: métrologie, analyse statistique et photo-induite des sites initiateurs,' Ph.D. dissertation (Université d' Aix-Marseille III, Marseille, France, 2002).
  22. International Organization for Standardization, 'Lasers and equipment associated with the lasers--determination of the threshold of damage caused by laser on optical surfaces--part 1: test 1 out of 1,' ISO Standard 11254, (ISO, Geneva, 2000).
  23. C. Amra, 'First order vector theory of bulk scattering in optical multilayers,' J. Opt. Soc. Am. A 10, 365-374 (1993).
    [CrossRef]

2005 (1)

2003 (1)

2002 (1)

1999 (1)

T. A. Germer and C. C. Asmail, 'Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,' Rev. Sci. Instrum. 70, 3688-3695 (1999).
[CrossRef]

1996 (3)

1995 (1)

D. Rönnow, S. K. Anderson, and G. A. Niklasson, 'Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,' Opt. Mater. 4, 815-821 (1995).
[CrossRef]

1994 (2)

1993 (3)

C. Amra, 'First order vector theory of bulk scattering in optical multilayers,' J. Opt. Soc. Am. A 10, 365-374 (1993).
[CrossRef]

P. Dumas, B. Bouffakhredine, C. Amra, O. Vatel, E. André, R. Galindo, and F. Salvan, 'Quantitative microroughness using near field microscopies and optical,' Europhys. Lett. 22, 717-722 (1993).
[CrossRef]

C. Amra, 'From light scattering to the microstructure of thin film multilayers,' Appl. Opt. 32, 5481-5491 (1993).
[CrossRef] [PubMed]

1992 (2)

R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, and L. Mattson, 'Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,' Appl. Opt. 31, 1426-1435 (1992).

G. Videen, J.-Y. Hsu, W. S. Bickel, and W. L. Wolfe, 'Polarized light scattered from rough surfaces,' J. Opt. Soc. Am. A 9, 1111-1118 (1992).
[CrossRef]

1983 (1)

1980 (1)

1969 (1)

S. N. Jasperson and S. E. Schnatterly, 'An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,' Rev. Sci. Instrum. 40, 761-767 (1969).
[CrossRef]

Al-Jumaily, G. A.

R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, and L. Mattson, 'Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,' Appl. Opt. 31, 1426-1435 (1992).

Amra, C.

Anderson, S. K.

D. Rönnow, S. K. Anderson, and G. A. Niklasson, 'Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,' Opt. Mater. 4, 815-821 (1995).
[CrossRef]

André, E.

P. Dumas, B. Bouffakhredine, C. Amra, O. Vatel, E. André, R. Galindo, and F. Salvan, 'Quantitative microroughness using near field microscopies and optical,' Europhys. Lett. 22, 717-722 (1993).
[CrossRef]

Asmail, C. C.

T. A. Germer and C. C. Asmail, 'Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,' Rev. Sci. Instrum. 70, 3688-3695 (1999).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977), pp. 364-416.

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977), pp. 364-416.

Bennet, J. M.

Bennett, J. M.

R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, and L. Mattson, 'Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,' Appl. Opt. 31, 1426-1435 (1992).

J. M. Elson, J. P. Rahn, and J. M. Bennett, 'Light scattering from multilayer optics: comparison of theory and experiment,' Appl. Opt. 19, 669-679 (1980).
[CrossRef] [PubMed]

Bickel, W. S.

Bouffakhredine, B.

P. Dumas, B. Bouffakhredine, C. Amra, O. Vatel, E. André, R. Galindo, and F. Salvan, 'Quantitative microroughness using near field microscopies and optical,' Europhys. Lett. 22, 717-722 (1993).
[CrossRef]

Chen, W.

S. J. Fang, W. Chen, T. Yamanaka, and C. R. Helms, 'Comparison of Si surface roughness measured by atomic force microscopy and ellipsometry,' Appl. Phys. Lett. 68, 2837-2839 (1996).
[CrossRef]

Deumié, C.

Drevillon, B.

B. Drevillon, 'Phase modulated ellipsometry from the ultraviolet to the infrared: in situ application to the growth of semi-conductors,' in Progress in Crystal Growth and Characterization of Materials (Pergamon, 1993), Vol. 27, pp. 1-87.

Dumas, P.

C. Deumié, R. Richier, P. Dumas, and C. Amra, 'Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,' Appl. Opt. 35, 5583-5594 (1996).
[CrossRef] [PubMed]

P. Dumas, B. Bouffakhredine, C. Amra, O. Vatel, E. André, R. Galindo, and F. Salvan, 'Quantitative microroughness using near field microscopies and optical,' Europhys. Lett. 22, 717-722 (1993).
[CrossRef]

Elson, J. M.

Fang, S. J.

S. J. Fang, W. Chen, T. Yamanaka, and C. R. Helms, 'Comparison of Si surface roughness measured by atomic force microscopy and ellipsometry,' Appl. Phys. Lett. 68, 2837-2839 (1996).
[CrossRef]

Galindo, R.

P. Dumas, B. Bouffakhredine, C. Amra, O. Vatel, E. André, R. Galindo, and F. Salvan, 'Quantitative microroughness using near field microscopies and optical,' Europhys. Lett. 22, 717-722 (1993).
[CrossRef]

Gallais, L.

L. Gallais and J. Y. Natoli, 'Optimized metrology for laser damage measurement--application to multiparameter study,' Appl. Opt. 42, 960-971 (2003).
[CrossRef] [PubMed]

L. Gallais 'Endommagement laser dans les composants optiques: métrologie, analyse statistique et photo-induite des sites initiateurs,' Ph.D. dissertation (Université d' Aix-Marseille III, Marseille, France, 2002).

Germer, T. A.

T. A. Germer and C. C. Asmail, 'Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,' Rev. Sci. Instrum. 70, 3688-3695 (1999).
[CrossRef]

Gilbert, O.

Giovannini, H.

Helms, C. R.

S. J. Fang, W. Chen, T. Yamanaka, and C. R. Helms, 'Comparison of Si surface roughness measured by atomic force microscopy and ellipsometry,' Appl. Phys. Lett. 68, 2837-2839 (1996).
[CrossRef]

Hsu, J.-Y.

Jacobson, R. D.

R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, and L. Mattson, 'Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,' Appl. Opt. 31, 1426-1435 (1992).

Jasperson, S. N.

S. N. Jasperson and S. E. Schnatterly, 'An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,' Rev. Sci. Instrum. 40, 761-767 (1969).
[CrossRef]

Mattson, L.

R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, and L. Mattson, 'Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,' Appl. Opt. 31, 1426-1435 (1992).

McNeil, J. R.

R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, and L. Mattson, 'Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,' Appl. Opt. 31, 1426-1435 (1992).

Natoli, J. Y.

Niklasson, G. A.

D. Rönnow, S. K. Anderson, and G. A. Niklasson, 'Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,' Opt. Mater. 4, 815-821 (1995).
[CrossRef]

Rahn, J. P.

Rhan, J. P.

Richier, R.

Rönnow, D.

D. Rönnow, S. K. Anderson, and G. A. Niklasson, 'Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,' Opt. Mater. 4, 815-821 (1995).
[CrossRef]

Salvan, F.

P. Dumas, B. Bouffakhredine, C. Amra, O. Vatel, E. André, R. Galindo, and F. Salvan, 'Quantitative microroughness using near field microscopies and optical,' Europhys. Lett. 22, 717-722 (1993).
[CrossRef]

Schnatterly, S. E.

S. N. Jasperson and S. E. Schnatterly, 'An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,' Rev. Sci. Instrum. 40, 761-767 (1969).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins, A User's Guide to Ellipsometry (Academic, 1997), pp. 1-257.

Vatel, O.

P. Dumas, B. Bouffakhredine, C. Amra, O. Vatel, E. André, R. Galindo, and F. Salvan, 'Quantitative microroughness using near field microscopies and optical,' Europhys. Lett. 22, 717-722 (1993).
[CrossRef]

Videen, G.

Wilson, S. R.

R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, and L. Mattson, 'Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,' Appl. Opt. 31, 1426-1435 (1992).

Wolfe, W. L.

Yamanaka, T.

S. J. Fang, W. Chen, T. Yamanaka, and C. R. Helms, 'Comparison of Si surface roughness measured by atomic force microscopy and ellipsometry,' Appl. Phys. Lett. 68, 2837-2839 (1996).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

S. J. Fang, W. Chen, T. Yamanaka, and C. R. Helms, 'Comparison of Si surface roughness measured by atomic force microscopy and ellipsometry,' Appl. Phys. Lett. 68, 2837-2839 (1996).
[CrossRef]

Europhys. Lett. (1)

P. Dumas, B. Bouffakhredine, C. Amra, O. Vatel, E. André, R. Galindo, and F. Salvan, 'Quantitative microroughness using near field microscopies and optical,' Europhys. Lett. 22, 717-722 (1993).
[CrossRef]

J. Opt. Soc. Am. A (4)

Opt. Express (1)

Opt. Mater. (1)

D. Rönnow, S. K. Anderson, and G. A. Niklasson, 'Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,' Opt. Mater. 4, 815-821 (1995).
[CrossRef]

Rev. Sci. Instrum. (2)

T. A. Germer and C. C. Asmail, 'Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,' Rev. Sci. Instrum. 70, 3688-3695 (1999).
[CrossRef]

S. N. Jasperson and S. E. Schnatterly, 'An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,' Rev. Sci. Instrum. 40, 761-767 (1969).
[CrossRef]

Other (6)

B. Drevillon, 'Phase modulated ellipsometry from the ultraviolet to the infrared: in situ application to the growth of semi-conductors,' in Progress in Crystal Growth and Characterization of Materials (Pergamon, 1993), Vol. 27, pp. 1-87.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977), pp. 364-416.

H. G. Tompkins, A User's Guide to Ellipsometry (Academic, 1997), pp. 1-257.

R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, and L. Mattson, 'Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,' Appl. Opt. 31, 1426-1435 (1992).

L. Gallais 'Endommagement laser dans les composants optiques: métrologie, analyse statistique et photo-induite des sites initiateurs,' Ph.D. dissertation (Université d' Aix-Marseille III, Marseille, France, 2002).

International Organization for Standardization, 'Lasers and equipment associated with the lasers--determination of the threshold of damage caused by laser on optical surfaces--part 1: test 1 out of 1,' ISO Standard 11254, (ISO, Geneva, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Basic principles of specular ellipsometry. The illumination angle is denoted by i..

Fig. 2
Fig. 2

Harmonics measurement and determination of the phase difference δ as a function of the incidence angle i in the case of Schott RG1000 glass (n = 1.5).

Fig. 3
Fig. 3

Ellipsometry of angular-resolved scattering. The illumination and scattered angles are denoted by i and θ, respectively.

Fig. 4
Fig. 4

Harmonics measurement and determination of the phase difference δ as a function of the scattering angle θ in the case of Schott RG1000 glass (n = 1.53). The incidence angle is 56°.

Fig. 5
Fig. 5

Definition of the geometrical parameters in the case of a thin film (index n, thickness e) deposited on a substrate (index ns ).

Fig. 6
Fig. 6

Theoretical variations of harmonics Ω (denoted by I1) and 2Ω (denoted by I2) in the case of a layer whose index is n = 1.6 as deposited on a substrate of index n = 1.5.

Fig. 7
Fig. 7

Theoretical variations of absolute values of harmonics Ω and 2Ω in the presence of an anisotropic plate.

Fig. 8
Fig. 8

Theoretical variations of the distance between zero values of the two harmonics as a function of the thin-film thickness (film of index n = 1.6 on a substrate of n = 1.5).

Fig. 9
Fig. 9

Phase difference as a function of the incidence angle in the case of a thin-film layer (n = 1.6) deposited on a glass substrate (n = 1.5).

Fig. 10
Fig. 10

Theoretical variations of the distance between zero values of the two harmonics as a function of the thin film (film of index n = 1.3 on a substrate of n = 1.5).

Fig. 11
Fig. 11

Silica sample. Deduced optical thickness of the transition layer, ne = 10 nm.

Fig. 12
Fig. 12

Laser-damage threshold for the different samples.

Fig. 13
Fig. 13

Specular ellipsometric measurements of the samples.

Fig. 14
Fig. 14

Specular ellipsometric measurements on a polished glass substrate (n = 1.5; roughness, 1 nm).

Fig. 15
Fig. 15

Specular ellipsometric measurements on (a) a rough glass substrate (n = 1.5; roughness, 1 μm) and (b) a metallic rough surfaces (gold; roughness, 1 μm).

Fig. 16
Fig. 16

Ellipsometric measurements of angular-resolved scattering on a polished glass substrate (n = 1.5; roughness, 1 nm). The stair curve corresponds to a theoretical simulation without a transition layer, and the dashed curve corresponds to a theoretical simulation with a transition layer (ne = 70 nm). The incidence angle is equal to 50°.

Fig. 17
Fig. 17

Ellipsometric measurements of angular-resolved scattering on a rough glass substrate (curve 1, n = 1.5; roughness, 1 μm), a metallic rough surface (curve 2; gold; roughness, 1 μm), and a bulk heterogeneous sample (curve 3). The incidence angle is equal to 50°.

Tables (1)

Tables Icon

Table 1 Comparison of Laser-Induced, Damage-Threshold Measurements and Specular Ellipsometric Measurements

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

δ M ( t ) = Δ 0 sin ( Ω t ) + α M .
I I 0 = I C + I Ω sin ( Ω t ) + I 2 Ω cos ( 2 Ω t ) ,
I C = 1 4 [ R S + R P + 2 J 0 ( Δ 0 ) ( R S R P ) 1 / 2 × cos ( δ + α M ) ] ,
I Ω = ( R S R P ) 1 / 2 J 1 ( Δ 0 ) sin ( δ + α M ) ,
I 2 Ω = ( R S R P ) 1 / 2 J 2 ( Δ 0 ) cos ( δ + α M ) ,
I Ω = 2 J 1 ( Δ 0 ) Δ g f h e ( e + f ) 2 ,
I 2 Ω = J 2 ( Δ 0 ) e 2 f 2 ( e + f ) 2 ,
e ( θ 0 ) = n 0 2 + n s 2 ,
f ( θ 0 ) = n 0 n s ( cos θ 0 cos θ s + cos θ s cos θ 0 ) ,
g ( θ 0 ) = ( n s n 0 2 n n n s ) ( cos θ s cos θ cos θ cos θ s ) ,
h ( θ 0 ) = ( n s 2 n 0 n n n 0 ) ( cos θ 0 cos θ cos θ cos θ 0 ) ,
I Ω = J 1 ( Δ 0 ) T L [ 2 Δ g f h e ( e + f ) 2 cos ( δ L ) + e 2 f 2 ( e + f ) 2 sin ( δ L ) ] ,
I 2 Ω = J 2 ( Δ 0 ) T L [ e 2 f 2 ( e + f ) 2 cos ( δ L ) 2 Δ g f h e ( e + f ) 2 sin ( δ L ) ] .

Metrics