Abstract

In a photonic band structure two kinds of gaps with different origins can be observed. Photonic gaps are determined by the symmetry of the photonic crystal, the lattice constant, and the contrast of the dielectric functions for the two components. Polaritonic gaps originate from the bulk optical properties of one of the components. Excitation of ionic components in the lattice results in a photon energy interval in which the dielectric function is negative. Here we investigate the interaction between photonic gaps and polaritonic gaps in one-dimensional and two-dimensional photonic structures. In particular, we show that by such interactions the polaritonic gap can be made wider and stronger, be left unchanged, or be made to vanish.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), Chap. 2.
  2. E. G. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996), Chap. 2.
  3. E. Yablonovitch, 'Photonic crystals,' J. Mod. Opt. 41, 173-194 (1994).
    [CrossRef]
  4. C. G. Ribbing, 'Photonic structures as interference devices,' in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 35-58.
  5. C. F. Klingshirn, Semiconductor Optics (Springer-Verlag, 1997), Chap. 4.
  6. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, 'Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,' Phys. Rev. B 49, 11080-11087 (1994).
    [CrossRef]
  7. W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, 'Photonic band structures of a two-dimensional ionic dielectric medium,' Phys. Rev. B 54, 10280-10283 (1996).
    [CrossRef]
  8. W. Zhang, A. Hu, and N. Ming, 'The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,' J. Phys. Condens. Matter 9, 541-549 (1997).
    [CrossRef]
  9. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Field expulsion and reconfiguration in polaritonic photonic crystals,' Phys. Rev. Lett. 90, 196402 (2003).
    [CrossRef] [PubMed]
  10. K. C. Huang, P. Binstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Phonon-polariton excitations in photonic crystals,' Phys. Rev. B 68, 075209 (2003).
    [CrossRef]
  11. R. Moussa, L. Salamon, F. de Fornel, J. P. Dufour, and H. Aourag, 'Photonic band gaps in highly ionic medium: CuCl, CuBr, Cul,' Infrared Phys. Technol. 44, 27-34 (2001).
    [CrossRef]
  12. O. Toader and S. John, 'Photonic band gap enhancement in frequency-dependent dielectrics,' Phys. Rev. E 70, 046605 (2004).
    [CrossRef]
  13. G. Gantzounis and N. Stefanou, 'Theoretical analysis of three-dimensional polaritonic photonic crystals,' Phys. Rev. B 72, 075107 (2005).
    [CrossRef]
  14. P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, 'A program for calculating photonic band structures and transmission coefficients of complex structures,' Comp. Phys. Commun. 85, 306-322 (1995).
    [CrossRef]
  15. C. K. Carniglia, 'Hot or hype? Reflections on the 'perfect mirror',' Photonics Spectra June 1999, 148-153.
  16. J. Dobrowolski, 'Reststrahlen filters,' in Handbook of Optics, W.Driscoll and S.Vaughan, eds. (McGraw-Hill, 1978), Chap. 8, Sec. 99.
  17. H. Högström and C. G. Ribbing, 'Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures,' Photonics Nanostruct. Fundam. Appl. 2, 23-32 (2004).
    [CrossRef]
  18. H. R. Philipp, 'Silicon dioxide,' in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1985) pp. 749-764.
  19. D. F. Edwards, 'Silicon,' in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1985), pp. 547-553.
  20. A. F. Turner, L. Chang, and T. P. Martin, 'Enhanced reflectance of Reststrahlen reflection filters,' Appl. Opt. 4, 927-933 (1965).
    [CrossRef]
  21. C. G. Ribbing, Ö. Staaf, and S. K. Andersson, 'Selective supression of thermal radiation from radomes and materials therefore,' Opt. Eng. 34, 3314-3322 (1995).
    [CrossRef]
  22. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
    [CrossRef]
  23. A. Rung, C. G. Ribbing, 'Calculated photonic structures for infrared emittance control,' Appl. Opt. 41, 3327-3331 (2002).
    [CrossRef] [PubMed]
  24. H. Högström, G. Forssell, and C. G. Ribbing, 'Realization of selective low emittance in both thermal atmospheric windows,' Opt. Eng. 44, 02600-1-7 (2005).
  25. E. Loh, 'Optical phonons in BeO crystals,' Phys. Rev. 166, 673-678 (1968).
    [CrossRef]
  26. C. G. Ribbing, 'Beryllium oxide: a frostpreventing insulator,' Opt. Lett. 15, 882-884 (1990).
  27. C. G. Ribbing and A. Rung, 'Sätt att skapa ett material med låg emittans i ett eller två bestämda våglängdsområden,' Swedish patent 0104195-3 (June 2003).
  28. A. Rung and C. G. Ribbing, 'Polaritonic and a photonic gap interaction in a 2D photonic crystal,' Phys. Rev. Lett. 92, 123901:1-3 (2004).
    [CrossRef]
  29. D. F. Edwards and R. H. White, 'Beryllium oxide' in Handbook of Optical Constants of Solids II, E.D.Palik, ed. (Academic, 1991), pp. 805-814.
  30. T. Chibuye, C. G. Ribbing, and E. Wäckelgård, 'Reststrahlen band studies of polycrystalline beryllium oxide,' Appl. Opt. 33, 5975-5981 (1994).
    [CrossRef] [PubMed]
  31. Ph. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, 'Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions,' Phys. Rev. Lett. 85, 1088-1090 (2000).
    [CrossRef] [PubMed]
  32. A. Rung, 'Numerical studies of energy gaps in photonic crystals,' Ph.D. dissertation (Acta Universitatis Upsaliensis, Faculty of Science and Engineering no. 67, Uppsala, Sweden (2005).

2005 (2)

G. Gantzounis and N. Stefanou, 'Theoretical analysis of three-dimensional polaritonic photonic crystals,' Phys. Rev. B 72, 075107 (2005).
[CrossRef]

H. Högström, G. Forssell, and C. G. Ribbing, 'Realization of selective low emittance in both thermal atmospheric windows,' Opt. Eng. 44, 02600-1-7 (2005).

2004 (3)

O. Toader and S. John, 'Photonic band gap enhancement in frequency-dependent dielectrics,' Phys. Rev. E 70, 046605 (2004).
[CrossRef]

H. Högström and C. G. Ribbing, 'Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures,' Photonics Nanostruct. Fundam. Appl. 2, 23-32 (2004).
[CrossRef]

A. Rung and C. G. Ribbing, 'Polaritonic and a photonic gap interaction in a 2D photonic crystal,' Phys. Rev. Lett. 92, 123901:1-3 (2004).
[CrossRef]

2003 (2)

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Field expulsion and reconfiguration in polaritonic photonic crystals,' Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

K. C. Huang, P. Binstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Phonon-polariton excitations in photonic crystals,' Phys. Rev. B 68, 075209 (2003).
[CrossRef]

2002 (1)

2001 (1)

R. Moussa, L. Salamon, F. de Fornel, J. P. Dufour, and H. Aourag, 'Photonic band gaps in highly ionic medium: CuCl, CuBr, Cul,' Infrared Phys. Technol. 44, 27-34 (2001).
[CrossRef]

2000 (1)

Ph. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, 'Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions,' Phys. Rev. Lett. 85, 1088-1090 (2000).
[CrossRef] [PubMed]

1999 (1)

C. K. Carniglia, 'Hot or hype? Reflections on the 'perfect mirror',' Photonics Spectra June 1999, 148-153.

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

1997 (1)

W. Zhang, A. Hu, and N. Ming, 'The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,' J. Phys. Condens. Matter 9, 541-549 (1997).
[CrossRef]

1996 (1)

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, 'Photonic band structures of a two-dimensional ionic dielectric medium,' Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

1995 (2)

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, 'A program for calculating photonic band structures and transmission coefficients of complex structures,' Comp. Phys. Commun. 85, 306-322 (1995).
[CrossRef]

C. G. Ribbing, Ö. Staaf, and S. K. Andersson, 'Selective supression of thermal radiation from radomes and materials therefore,' Opt. Eng. 34, 3314-3322 (1995).
[CrossRef]

1994 (3)

E. Yablonovitch, 'Photonic crystals,' J. Mod. Opt. 41, 173-194 (1994).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, 'Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,' Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

T. Chibuye, C. G. Ribbing, and E. Wäckelgård, 'Reststrahlen band studies of polycrystalline beryllium oxide,' Appl. Opt. 33, 5975-5981 (1994).
[CrossRef] [PubMed]

1990 (1)

C. G. Ribbing, 'Beryllium oxide: a frostpreventing insulator,' Opt. Lett. 15, 882-884 (1990).

1968 (1)

E. Loh, 'Optical phonons in BeO crystals,' Phys. Rev. 166, 673-678 (1968).
[CrossRef]

1965 (1)

A. F. Turner, L. Chang, and T. P. Martin, 'Enhanced reflectance of Reststrahlen reflection filters,' Appl. Opt. 4, 927-933 (1965).
[CrossRef]

Aourag, H.

R. Moussa, L. Salamon, F. de Fornel, J. P. Dufour, and H. Aourag, 'Photonic band gaps in highly ionic medium: CuCl, CuBr, Cul,' Infrared Phys. Technol. 44, 27-34 (2001).
[CrossRef]

Bell, P. M.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, 'A program for calculating photonic band structures and transmission coefficients of complex structures,' Comp. Phys. Commun. 85, 306-322 (1995).
[CrossRef]

Bienstman, P.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Field expulsion and reconfiguration in polaritonic photonic crystals,' Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

Binstman, P.

K. C. Huang, P. Binstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Phonon-polariton excitations in photonic crystals,' Phys. Rev. B 68, 075209 (2003).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

Carniglia, C. K.

C. K. Carniglia, 'Hot or hype? Reflections on the 'perfect mirror',' Photonics Spectra June 1999, 148-153.

Chan, C. T.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, 'Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,' Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

Chang, L.

A. F. Turner, L. Chang, and T. P. Martin, 'Enhanced reflectance of Reststrahlen reflection filters,' Appl. Opt. 4, 927-933 (1965).
[CrossRef]

Chibuye, T.

de Fornel, F.

R. Moussa, L. Salamon, F. de Fornel, J. P. Dufour, and H. Aourag, 'Photonic band gaps in highly ionic medium: CuCl, CuBr, Cul,' Infrared Phys. Technol. 44, 27-34 (2001).
[CrossRef]

Dederichs, P. H.

Ph. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, 'Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions,' Phys. Rev. Lett. 85, 1088-1090 (2000).
[CrossRef] [PubMed]

Dobrowolski, J.

J. Dobrowolski, 'Reststrahlen filters,' in Handbook of Optics, W.Driscoll and S.Vaughan, eds. (McGraw-Hill, 1978), Chap. 8, Sec. 99.

Dufour, J. P.

R. Moussa, L. Salamon, F. de Fornel, J. P. Dufour, and H. Aourag, 'Photonic band gaps in highly ionic medium: CuCl, CuBr, Cul,' Infrared Phys. Technol. 44, 27-34 (2001).
[CrossRef]

Edwards, D. F.

D. F. Edwards, 'Silicon,' in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1985), pp. 547-553.

D. F. Edwards and R. H. White, 'Beryllium oxide' in Handbook of Optical Constants of Solids II, E.D.Palik, ed. (Academic, 1991), pp. 805-814.

Fan, S.

K. C. Huang, P. Binstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Phonon-polariton excitations in photonic crystals,' Phys. Rev. B 68, 075209 (2003).
[CrossRef]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Field expulsion and reconfiguration in polaritonic photonic crystals,' Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

Forssell, G.

H. Högström, G. Forssell, and C. G. Ribbing, 'Realization of selective low emittance in both thermal atmospheric windows,' Opt. Eng. 44, 02600-1-7 (2005).

Gantzounis, G.

G. Gantzounis and N. Stefanou, 'Theoretical analysis of three-dimensional polaritonic photonic crystals,' Phys. Rev. B 72, 075107 (2005).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, 'Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,' Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

Högström, H.

H. Högström, G. Forssell, and C. G. Ribbing, 'Realization of selective low emittance in both thermal atmospheric windows,' Opt. Eng. 44, 02600-1-7 (2005).

H. Högström and C. G. Ribbing, 'Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures,' Photonics Nanostruct. Fundam. Appl. 2, 23-32 (2004).
[CrossRef]

Hu, A.

W. Zhang, A. Hu, and N. Ming, 'The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,' J. Phys. Condens. Matter 9, 541-549 (1997).
[CrossRef]

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, 'Photonic band structures of a two-dimensional ionic dielectric medium,' Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Huang, K. C.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Field expulsion and reconfiguration in polaritonic photonic crystals,' Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

K. C. Huang, P. Binstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Phonon-polariton excitations in photonic crystals,' Phys. Rev. B 68, 075209 (2003).
[CrossRef]

Joannopoulos, J. D.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Field expulsion and reconfiguration in polaritonic photonic crystals,' Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

K. C. Huang, P. Binstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Phonon-polariton excitations in photonic crystals,' Phys. Rev. B 68, 075209 (2003).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), Chap. 2.

John, S.

O. Toader and S. John, 'Photonic band gap enhancement in frequency-dependent dielectrics,' Phys. Rev. E 70, 046605 (2004).
[CrossRef]

Kittel, E. G. C.

E. G. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996), Chap. 2.

Klingshirn, C. F.

C. F. Klingshirn, Semiconductor Optics (Springer-Verlag, 1997), Chap. 4.

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

Lei, X.

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, 'Photonic band structures of a two-dimensional ionic dielectric medium,' Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

Loh, E.

E. Loh, 'Optical phonons in BeO crystals,' Phys. Rev. 166, 673-678 (1968).
[CrossRef]

Martin, T. P.

A. F. Turner, L. Chang, and T. P. Martin, 'Enhanced reflectance of Reststrahlen reflection filters,' Appl. Opt. 4, 927-933 (1965).
[CrossRef]

Mavropoulos, Ph.

Ph. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, 'Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions,' Phys. Rev. Lett. 85, 1088-1090 (2000).
[CrossRef] [PubMed]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), Chap. 2.

Ming, N.

W. Zhang, A. Hu, and N. Ming, 'The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,' J. Phys. Condens. Matter 9, 541-549 (1997).
[CrossRef]

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, 'Photonic band structures of a two-dimensional ionic dielectric medium,' Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Moreno, L. M.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, 'A program for calculating photonic band structures and transmission coefficients of complex structures,' Comp. Phys. Commun. 85, 306-322 (1995).
[CrossRef]

Moussa, R.

R. Moussa, L. Salamon, F. de Fornel, J. P. Dufour, and H. Aourag, 'Photonic band gaps in highly ionic medium: CuCl, CuBr, Cul,' Infrared Phys. Technol. 44, 27-34 (2001).
[CrossRef]

Nelson, K. A.

K. C. Huang, P. Binstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Phonon-polariton excitations in photonic crystals,' Phys. Rev. B 68, 075209 (2003).
[CrossRef]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Field expulsion and reconfiguration in polaritonic photonic crystals,' Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

Papanikolaou, N.

Ph. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, 'Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions,' Phys. Rev. Lett. 85, 1088-1090 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, 'A program for calculating photonic band structures and transmission coefficients of complex structures,' Comp. Phys. Commun. 85, 306-322 (1995).
[CrossRef]

Philipp, H. R.

H. R. Philipp, 'Silicon dioxide,' in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1985) pp. 749-764.

Ribbing, C. G.

H. Högström, G. Forssell, and C. G. Ribbing, 'Realization of selective low emittance in both thermal atmospheric windows,' Opt. Eng. 44, 02600-1-7 (2005).

A. Rung and C. G. Ribbing, 'Polaritonic and a photonic gap interaction in a 2D photonic crystal,' Phys. Rev. Lett. 92, 123901:1-3 (2004).
[CrossRef]

H. Högström and C. G. Ribbing, 'Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures,' Photonics Nanostruct. Fundam. Appl. 2, 23-32 (2004).
[CrossRef]

A. Rung, C. G. Ribbing, 'Calculated photonic structures for infrared emittance control,' Appl. Opt. 41, 3327-3331 (2002).
[CrossRef] [PubMed]

C. G. Ribbing, Ö. Staaf, and S. K. Andersson, 'Selective supression of thermal radiation from radomes and materials therefore,' Opt. Eng. 34, 3314-3322 (1995).
[CrossRef]

T. Chibuye, C. G. Ribbing, and E. Wäckelgård, 'Reststrahlen band studies of polycrystalline beryllium oxide,' Appl. Opt. 33, 5975-5981 (1994).
[CrossRef] [PubMed]

C. G. Ribbing, 'Beryllium oxide: a frostpreventing insulator,' Opt. Lett. 15, 882-884 (1990).

C. G. Ribbing and A. Rung, 'Sätt att skapa ett material med låg emittans i ett eller två bestämda våglängdsområden,' Swedish patent 0104195-3 (June 2003).

C. G. Ribbing, 'Photonic structures as interference devices,' in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 35-58.

Rung, A.

A. Rung and C. G. Ribbing, 'Polaritonic and a photonic gap interaction in a 2D photonic crystal,' Phys. Rev. Lett. 92, 123901:1-3 (2004).
[CrossRef]

A. Rung, C. G. Ribbing, 'Calculated photonic structures for infrared emittance control,' Appl. Opt. 41, 3327-3331 (2002).
[CrossRef] [PubMed]

C. G. Ribbing and A. Rung, 'Sätt att skapa ett material med låg emittans i ett eller två bestämda våglängdsområden,' Swedish patent 0104195-3 (June 2003).

A. Rung, 'Numerical studies of energy gaps in photonic crystals,' Ph.D. dissertation (Acta Universitatis Upsaliensis, Faculty of Science and Engineering no. 67, Uppsala, Sweden (2005).

Salamon, L.

R. Moussa, L. Salamon, F. de Fornel, J. P. Dufour, and H. Aourag, 'Photonic band gaps in highly ionic medium: CuCl, CuBr, Cul,' Infrared Phys. Technol. 44, 27-34 (2001).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, 'Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,' Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

Soukoulis, C. M.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, 'Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,' Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

Stefanou, N.

G. Gantzounis and N. Stefanou, 'Theoretical analysis of three-dimensional polaritonic photonic crystals,' Phys. Rev. B 72, 075107 (2005).
[CrossRef]

Toader, O.

O. Toader and S. John, 'Photonic band gap enhancement in frequency-dependent dielectrics,' Phys. Rev. E 70, 046605 (2004).
[CrossRef]

Turner, A. F.

A. F. Turner, L. Chang, and T. P. Martin, 'Enhanced reflectance of Reststrahlen reflection filters,' Appl. Opt. 4, 927-933 (1965).
[CrossRef]

Wäckelgård, E.

Ward, A. J.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, 'A program for calculating photonic band structures and transmission coefficients of complex structures,' Comp. Phys. Commun. 85, 306-322 (1995).
[CrossRef]

White, R. H.

D. F. Edwards and R. H. White, 'Beryllium oxide' in Handbook of Optical Constants of Solids II, E.D.Palik, ed. (Academic, 1991), pp. 805-814.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), Chap. 2.

Xu, N.

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, 'Photonic band structures of a two-dimensional ionic dielectric medium,' Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, 'Photonic crystals,' J. Mod. Opt. 41, 173-194 (1994).
[CrossRef]

Zhang, W.

W. Zhang, A. Hu, and N. Ming, 'The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,' J. Phys. Condens. Matter 9, 541-549 (1997).
[CrossRef]

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, 'Photonic band structures of a two-dimensional ionic dielectric medium,' Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

Appl. Opt. (3)

Comp. Phys. Commun. (1)

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, 'A program for calculating photonic band structures and transmission coefficients of complex structures,' Comp. Phys. Commun. 85, 306-322 (1995).
[CrossRef]

Fundam. Appl. (1)

H. Högström and C. G. Ribbing, 'Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures,' Photonics Nanostruct. Fundam. Appl. 2, 23-32 (2004).
[CrossRef]

Infrared Phys. Technol. (1)

R. Moussa, L. Salamon, F. de Fornel, J. P. Dufour, and H. Aourag, 'Photonic band gaps in highly ionic medium: CuCl, CuBr, Cul,' Infrared Phys. Technol. 44, 27-34 (2001).
[CrossRef]

J. Mod. Opt. (1)

E. Yablonovitch, 'Photonic crystals,' J. Mod. Opt. 41, 173-194 (1994).
[CrossRef]

J. Phys. Condens. Matter (1)

W. Zhang, A. Hu, and N. Ming, 'The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,' J. Phys. Condens. Matter 9, 541-549 (1997).
[CrossRef]

Nature (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998).
[CrossRef]

Opt. Eng. (2)

H. Högström, G. Forssell, and C. G. Ribbing, 'Realization of selective low emittance in both thermal atmospheric windows,' Opt. Eng. 44, 02600-1-7 (2005).

C. G. Ribbing, Ö. Staaf, and S. K. Andersson, 'Selective supression of thermal radiation from radomes and materials therefore,' Opt. Eng. 34, 3314-3322 (1995).
[CrossRef]

Opt. Lett. (1)

C. G. Ribbing, 'Beryllium oxide: a frostpreventing insulator,' Opt. Lett. 15, 882-884 (1990).

Photonics Spectra June (1)

C. K. Carniglia, 'Hot or hype? Reflections on the 'perfect mirror',' Photonics Spectra June 1999, 148-153.

Phys. Rev. (1)

E. Loh, 'Optical phonons in BeO crystals,' Phys. Rev. 166, 673-678 (1968).
[CrossRef]

Phys. Rev. B (4)

K. C. Huang, P. Binstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Phonon-polariton excitations in photonic crystals,' Phys. Rev. B 68, 075209 (2003).
[CrossRef]

G. Gantzounis and N. Stefanou, 'Theoretical analysis of three-dimensional polaritonic photonic crystals,' Phys. Rev. B 72, 075107 (2005).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, 'Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,' Phys. Rev. B 49, 11080-11087 (1994).
[CrossRef]

W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, 'Photonic band structures of a two-dimensional ionic dielectric medium,' Phys. Rev. B 54, 10280-10283 (1996).
[CrossRef]

Phys. Rev. E (1)

O. Toader and S. John, 'Photonic band gap enhancement in frequency-dependent dielectrics,' Phys. Rev. E 70, 046605 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Field expulsion and reconfiguration in polaritonic photonic crystals,' Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

A. Rung and C. G. Ribbing, 'Polaritonic and a photonic gap interaction in a 2D photonic crystal,' Phys. Rev. Lett. 92, 123901:1-3 (2004).
[CrossRef]

Ph. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, 'Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions,' Phys. Rev. Lett. 85, 1088-1090 (2000).
[CrossRef] [PubMed]

Other (10)

A. Rung, 'Numerical studies of energy gaps in photonic crystals,' Ph.D. dissertation (Acta Universitatis Upsaliensis, Faculty of Science and Engineering no. 67, Uppsala, Sweden (2005).

D. F. Edwards and R. H. White, 'Beryllium oxide' in Handbook of Optical Constants of Solids II, E.D.Palik, ed. (Academic, 1991), pp. 805-814.

C. G. Ribbing and A. Rung, 'Sätt att skapa ett material med låg emittans i ett eller två bestämda våglängdsområden,' Swedish patent 0104195-3 (June 2003).

C. G. Ribbing, 'Photonic structures as interference devices,' in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 35-58.

C. F. Klingshirn, Semiconductor Optics (Springer-Verlag, 1997), Chap. 4.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), Chap. 2.

E. G. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996), Chap. 2.

J. Dobrowolski, 'Reststrahlen filters,' in Handbook of Optics, W.Driscoll and S.Vaughan, eds. (McGraw-Hill, 1978), Chap. 8, Sec. 99.

H. R. Philipp, 'Silicon dioxide,' in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1985) pp. 749-764.

D. F. Edwards, 'Silicon,' in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1985), pp. 547-553.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Dispersion relations for light (dashed curves) and phonons (solid curves) in an ionic compound. In the interaction region the dispersion for the polariton is included (dashed–dotted curve). The location of the Reststrahlen band is given on the left-hand side of the diagram. (Cited from Ref. 4.)

Fig. 2
Fig. 2

Reststrahlen band of crystalline quartz calculated with the oscillator model by using the experimental oscillator parameters.

Fig. 3
Fig. 3

Near-normal measured and calculated reflectance spectra for three 0.8 μm poly-Si and the three 1.84 μm a-SiO2 layers, with Si as an extra front layer, on a Si wafer. (Cited from Ref. 17.)

Fig. 4
Fig. 4

Calculated reflectance spectra for a multilayer of seven Si layers with six intervening SiO2 layers, all of thicknesses as indicated by the x values. Reflectance values are given by the color-code bar to the right (Cited from Ref. 17.)

Fig. 5
Fig. 5

Calculated reflectance spectra as in Fig. 4 for a seven-layer SiO2 (3 × SiO2∕Si) stack with thickness of the individual layer on the x axis, wavelength on the y axis, and reflectance according to the color code bar to the right. (Cited from Ref. 17.)

Fig. 6
Fig. 6

Calculated reflectance spectra as in Figs. 4 and 5 for structures in which the Si layers have been replaced with air. (Cited from Ref. 14).

Fig. 7
Fig. 7

Calculated and measured reflectance spectra for the double layer Si (0.9)∕SiO2 (2.45 μm) on a 550 μm Si wafer. The thin solid curve is the transmittance of the filter in the heat camera used in the evaluation. (Cited from Ref. 23.)

Fig. 8
Fig. 8

Square 2D structure of BeO circles with radius r and lattice constant a (left panel), with the corresponding first Brillouin zone and symmetry symbols (right panel).

Fig. 9
Fig. 9

Photonic band structure for BeO circles in air, according to Fig. 8 (left panel). TE and TM modes as indicated. The right-hand panel shows the damped states as functions of the imaginary wave vector: lattice constant, a = 6.0 μm; packing fraction, ra = 0.16. (Cited from Ref. 28.)

Fig. 10
Fig. 10

(Left) Γ–X band diagrams and (right) corresponding transmittance diagrams for (a) TE and (b) TM modes for a square photonic crystal of BeO rods in air with lattice constant a = 2.0 μm and packing fraction ra = 0.40. Material parameters are as in Eq. (3) above. (Cited from Ref. 32.)

Fig. 11
Fig. 11

Upper (filled circles) and lower (open circles) gap edges for the photonic and polaritonic gaps for a square BeO∕air PhC as a function of packing fraction ra Lattice constant a = 2.8 μm. TE and TM modes as indicated. (Cited from Ref. 28.)

Fig. 12
Fig. 12

Photonic and polaritonic gap edges for the square BeO∕air PhC as a function of lattice constant a, with the packing fraction ra = 0.25. The merging of the photonic and polaritonic gaps occurs for a = 5.5 and 4.5 μm in the TE and TM cases respectively. (Cited from Ref. 28.)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω 2 = c 2 ϵ ( ω ) K 2 ,
ω = ω r ( ϵ 0 1 ϵ 1 ) 1 / 2 ,
ϵ = ϵ + [ ϵ ( 0 ) ϵ ] ω T      2 ( ω T       2 ω 2 i ω γ ) .

Metrics