Abstract

The equipment and methods used to produce wide-angle antireflection coatings based on Reststrahlen materials are described. The optical constants of the coating materials used in the construction of the multilayers were determined by spectrophotometric ellipsometry and are compared with the literature values. The measured performance of an experimentally produced antireflection coating is compared with the expected calculated performance. The reflectance is low over a wide range of angles, but only in the narrow-wavelength region at which the refractive index of the Reststrahlen material is close to unity.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. V. Grebenshchikov, L. G. Vlasov, B. S. Neporent, and N. V. Suikovskaya, Prosvetlenie Optiki (Antireflection Coating of Optical Surfaces) (State Publishers of Technical and Theoretical Literature, 1946).
  2. U. B. Schallenberg, 'AR design with equivalent layers,' Appl. Opt. 45, 1507-1514 (2005).
  3. J. A. Dobrowolski, D. Poitras, M. Penghui, V. Himanshu, and M. Acree, 'Toward perfect antireflection coatings: numerical investigation,' Appl. Opt. 41, 3075-3083 (2002).
    [CrossRef] [PubMed]
  4. D. Poitras and J. A. Dobrowolski, 'Toward perfect antireflection coatings. 2. Theory,' Appl. Opt. 43, 1286-1295 (2004).
    [CrossRef] [PubMed]
  5. P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of 'perfect' antireflection coatings,' in Proceedings of the 45th Annual Technical Conference (Society of Vacuum Coaters, 2002), 216-218.
  6. J. A. Dobrowolski, 'Coatings and filters,' in Handbook of Optics, W. G. Driscoll and W. Vaughan, eds. (McGraw-Hill, 1978), pp. 8.1-8.124.
  7. V. M. Zolotarev and V. N. Morozov, 'Optical constants of GeO2 oxides in the 4000-200 cm−1 region,' Opt. Spectrosc. (USSR) 34, 181-182 (1973).
  8. H. R. Philipp, 'Silicon dioxide (SiO2) (glass),' in Handbook of Optical Constants of Solids, Vol. 1, E. D. Palik, ed. (Academic, 1985), pp. 749-764.
  9. C. M. Herzinger, B. D. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, 'Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,' J. Appl. Phys. 83, 3323-3336 (1998).
    [CrossRef]
  10. J. A. Woollam, B. Johs, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part I: basic theory and typical applications,' in Optical Metrology (SPIE, 1999), pp. 3-28.
  11. B. Johs, J. A. Woollam, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part II: advanced applications,' in Optical Metrology (SPIE, 1999), pp. 29-58.
  12. C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, 'InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,' J. Appl. Phys. 77, 1715-1724 (1995).
    [CrossRef]
  13. A. Kinbara and S. Baba, 'Cracking in vacuum deposited MgF2 films,' Proc. of the 8th International Vacuum Congress (IVC, 1980), pp. 323-326.
  14. P. Radhakrishnan and K. Sathianandan, 'Damage threshold studies of magnesium fluoride thin films deposited over polyacrilonitrile,' Appl. Opt. 25, 1027-1028 (1986).
    [CrossRef] [PubMed]
  15. K. Matsubara, S. Kawata, and S. Minami, 'Multilayer system for high-precision surface plasmon resonance sensor,' Opt. Lett. 15, 75-77 (1990).
    [CrossRef] [PubMed]
  16. T. Takagi and I. Yamade, 'Ionized-cluster-beam deposition of optical interference coatings,' Appl. Opt. 24, 879-882 (1985).
    [CrossRef] [PubMed]

2004 (1)

2002 (1)

1999 (2)

J. A. Woollam, B. Johs, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part I: basic theory and typical applications,' in Optical Metrology (SPIE, 1999), pp. 3-28.

B. Johs, J. A. Woollam, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part II: advanced applications,' in Optical Metrology (SPIE, 1999), pp. 29-58.

1998 (1)

C. M. Herzinger, B. D. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, 'Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,' J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

1995 (1)

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, 'InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,' J. Appl. Phys. 77, 1715-1724 (1995).
[CrossRef]

1990 (1)

1986 (1)

1985 (2)

T. Takagi and I. Yamade, 'Ionized-cluster-beam deposition of optical interference coatings,' Appl. Opt. 24, 879-882 (1985).
[CrossRef] [PubMed]

H. R. Philipp, 'Silicon dioxide (SiO2) (glass),' in Handbook of Optical Constants of Solids, Vol. 1, E. D. Palik, ed. (Academic, 1985), pp. 749-764.

1980 (1)

A. Kinbara and S. Baba, 'Cracking in vacuum deposited MgF2 films,' Proc. of the 8th International Vacuum Congress (IVC, 1980), pp. 323-326.

1978 (1)

J. A. Dobrowolski, 'Coatings and filters,' in Handbook of Optics, W. G. Driscoll and W. Vaughan, eds. (McGraw-Hill, 1978), pp. 8.1-8.124.

1973 (1)

V. M. Zolotarev and V. N. Morozov, 'Optical constants of GeO2 oxides in the 4000-200 cm−1 region,' Opt. Spectrosc. (USSR) 34, 181-182 (1973).

Acree, M.

Baba, S.

A. Kinbara and S. Baba, 'Cracking in vacuum deposited MgF2 films,' Proc. of the 8th International Vacuum Congress (IVC, 1980), pp. 323-326.

Bungay, C.

B. Johs, J. A. Woollam, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part II: advanced applications,' in Optical Metrology (SPIE, 1999), pp. 29-58.

J. A. Woollam, B. Johs, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part I: basic theory and typical applications,' in Optical Metrology (SPIE, 1999), pp. 3-28.

Cassidy, T.

P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of 'perfect' antireflection coatings,' in Proceedings of the 45th Annual Technical Conference (Society of Vacuum Coaters, 2002), 216-218.

Dobrowolski, J. A.

D. Poitras and J. A. Dobrowolski, 'Toward perfect antireflection coatings. 2. Theory,' Appl. Opt. 43, 1286-1295 (2004).
[CrossRef] [PubMed]

J. A. Dobrowolski, D. Poitras, M. Penghui, V. Himanshu, and M. Acree, 'Toward perfect antireflection coatings: numerical investigation,' Appl. Opt. 41, 3075-3083 (2002).
[CrossRef] [PubMed]

J. A. Dobrowolski, 'Coatings and filters,' in Handbook of Optics, W. G. Driscoll and W. Vaughan, eds. (McGraw-Hill, 1978), pp. 8.1-8.124.

P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of 'perfect' antireflection coatings,' in Proceedings of the 45th Annual Technical Conference (Society of Vacuum Coaters, 2002), 216-218.

Grebenshchikov, I. V.

I. V. Grebenshchikov, L. G. Vlasov, B. S. Neporent, and N. V. Suikovskaya, Prosvetlenie Optiki (Antireflection Coating of Optical Surfaces) (State Publishers of Technical and Theoretical Literature, 1946).

Herzinger, C. M.

C. M. Herzinger, B. D. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, 'Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,' J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, 'InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,' J. Appl. Phys. 77, 1715-1724 (1995).
[CrossRef]

Herzinger, J. N.

J. A. Woollam, B. Johs, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part I: basic theory and typical applications,' in Optical Metrology (SPIE, 1999), pp. 3-28.

B. Johs, J. A. Woollam, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part II: advanced applications,' in Optical Metrology (SPIE, 1999), pp. 29-58.

Himanshu, V.

Johs, B.

J. A. Woollam, B. Johs, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part I: basic theory and typical applications,' in Optical Metrology (SPIE, 1999), pp. 3-28.

B. Johs, J. A. Woollam, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part II: advanced applications,' in Optical Metrology (SPIE, 1999), pp. 29-58.

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, 'InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,' J. Appl. Phys. 77, 1715-1724 (1995).
[CrossRef]

Johs, B. D.

C. M. Herzinger, B. D. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, 'Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,' J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Kawata, S.

Kinbara, A.

A. Kinbara and S. Baba, 'Cracking in vacuum deposited MgF2 films,' Proc. of the 8th International Vacuum Congress (IVC, 1980), pp. 323-326.

Lin, F.

P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of 'perfect' antireflection coatings,' in Proceedings of the 45th Annual Technical Conference (Society of Vacuum Coaters, 2002), 216-218.

Ma, P.

P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of 'perfect' antireflection coatings,' in Proceedings of the 45th Annual Technical Conference (Society of Vacuum Coaters, 2002), 216-218.

Matsubara, K.

McGahan, W. A.

C. M. Herzinger, B. D. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, 'Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,' J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Minami, S.

Morozov, V. N.

V. M. Zolotarev and V. N. Morozov, 'Optical constants of GeO2 oxides in the 4000-200 cm−1 region,' Opt. Spectrosc. (USSR) 34, 181-182 (1973).

Neporent, B. S.

I. V. Grebenshchikov, L. G. Vlasov, B. S. Neporent, and N. V. Suikovskaya, Prosvetlenie Optiki (Antireflection Coating of Optical Surfaces) (State Publishers of Technical and Theoretical Literature, 1946).

Paulson, W.

C. M. Herzinger, B. D. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, 'Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,' J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

Penghui, M.

Philipp, H. R.

H. R. Philipp, 'Silicon dioxide (SiO2) (glass),' in Handbook of Optical Constants of Solids, Vol. 1, E. D. Palik, ed. (Academic, 1985), pp. 749-764.

Poitras, D.

D. Poitras and J. A. Dobrowolski, 'Toward perfect antireflection coatings. 2. Theory,' Appl. Opt. 43, 1286-1295 (2004).
[CrossRef] [PubMed]

J. A. Dobrowolski, D. Poitras, M. Penghui, V. Himanshu, and M. Acree, 'Toward perfect antireflection coatings: numerical investigation,' Appl. Opt. 41, 3075-3083 (2002).
[CrossRef] [PubMed]

P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of 'perfect' antireflection coatings,' in Proceedings of the 45th Annual Technical Conference (Society of Vacuum Coaters, 2002), 216-218.

Radhakrishnan, P.

Sathianandan, K.

Schallenberg, U. B.

U. B. Schallenberg, 'AR design with equivalent layers,' Appl. Opt. 45, 1507-1514 (2005).

Snyder, P. G.

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, 'InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,' J. Appl. Phys. 77, 1715-1724 (1995).
[CrossRef]

Suikovskaya, N. V.

I. V. Grebenshchikov, L. G. Vlasov, B. S. Neporent, and N. V. Suikovskaya, Prosvetlenie Optiki (Antireflection Coating of Optical Surfaces) (State Publishers of Technical and Theoretical Literature, 1946).

Synowicki, R.

J. A. Woollam, B. Johs, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part I: basic theory and typical applications,' in Optical Metrology (SPIE, 1999), pp. 3-28.

B. Johs, J. A. Woollam, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part II: advanced applications,' in Optical Metrology (SPIE, 1999), pp. 29-58.

Takagi, T.

Vlasov, L. G.

I. V. Grebenshchikov, L. G. Vlasov, B. S. Neporent, and N. V. Suikovskaya, Prosvetlenie Optiki (Antireflection Coating of Optical Surfaces) (State Publishers of Technical and Theoretical Literature, 1946).

Woollam, J. A.

J. A. Woollam, B. Johs, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part I: basic theory and typical applications,' in Optical Metrology (SPIE, 1999), pp. 3-28.

B. Johs, J. A. Woollam, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part II: advanced applications,' in Optical Metrology (SPIE, 1999), pp. 29-58.

C. M. Herzinger, B. D. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, 'Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,' J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, 'InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,' J. Appl. Phys. 77, 1715-1724 (1995).
[CrossRef]

Yamade, I.

Zolotarev, V. M.

V. M. Zolotarev and V. N. Morozov, 'Optical constants of GeO2 oxides in the 4000-200 cm−1 region,' Opt. Spectrosc. (USSR) 34, 181-182 (1973).

Appl. Opt. (4)

J. Appl. Phys. (2)

C. M. Herzinger, B. D. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, 'Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,' J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, 'InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,' J. Appl. Phys. 77, 1715-1724 (1995).
[CrossRef]

Opt. Lett. (1)

Other (9)

J. A. Woollam, B. Johs, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part I: basic theory and typical applications,' in Optical Metrology (SPIE, 1999), pp. 3-28.

B. Johs, J. A. Woollam, J. N. Herzinger, R. Synowicki, and C. Bungay, 'Overview of variable angle spectroscopic ellipsometry (VASE), Part II: advanced applications,' in Optical Metrology (SPIE, 1999), pp. 29-58.

A. Kinbara and S. Baba, 'Cracking in vacuum deposited MgF2 films,' Proc. of the 8th International Vacuum Congress (IVC, 1980), pp. 323-326.

I. V. Grebenshchikov, L. G. Vlasov, B. S. Neporent, and N. V. Suikovskaya, Prosvetlenie Optiki (Antireflection Coating of Optical Surfaces) (State Publishers of Technical and Theoretical Literature, 1946).

U. B. Schallenberg, 'AR design with equivalent layers,' Appl. Opt. 45, 1507-1514 (2005).

P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of 'perfect' antireflection coatings,' in Proceedings of the 45th Annual Technical Conference (Society of Vacuum Coaters, 2002), 216-218.

J. A. Dobrowolski, 'Coatings and filters,' in Handbook of Optics, W. G. Driscoll and W. Vaughan, eds. (McGraw-Hill, 1978), pp. 8.1-8.124.

V. M. Zolotarev and V. N. Morozov, 'Optical constants of GeO2 oxides in the 4000-200 cm−1 region,' Opt. Spectrosc. (USSR) 34, 181-182 (1973).

H. R. Philipp, 'Silicon dioxide (SiO2) (glass),' in Handbook of Optical Constants of Solids, Vol. 1, E. D. Palik, ed. (Academic, 1985), pp. 749-764.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Published optical constants n, k of GeO2 and SiO2. Arrows in the two diagrams indicate the wavelengths at which the refractive indices are equal to unity.

Fig. 2
Fig. 2

Calculated performance of an AR coating based on GeO2. (a) Angular variation of the average reflectance at a wavelength of 9.3 μm. Inset shows the construction parameters of the coating. (b) Average spectral reflectance for light incident at 30°, 50°, 60°, 70°, 80°, and 85°.

Fig. 3
Fig. 3

Calculated performance of an AR coating based on SiO2. (a) Angular variation of the average reflectance at a wavelength of 7.2 μm. The construction parameters of the coating are shown in the inset. (b) Average spectral reflectance for light incident at 30°, 50°, 60°, 70°, 80°, and 85°.

Fig. 4
Fig. 4

Measured optical constants of the Si substrate and of the GeO2, SiO2, ZnS, MgF2, and Al2O3 layers.

Fig. 5
Fig. 5

Comparison of measured optical constants of GeO2 and SiO2 with values from the literature: (a) refractive indices and (b) extinction coefficients.

Fig. 6
Fig. 6

Calculated effect on the average reflectance Rav of errors in the thicknesses and refractive indices of the SiO2-based AR system.

Fig. 7
Fig. 7

Schematic of an AR coating (a) without and (b) with thin Al2O3 layers (see text for discussion).

Fig. 8
Fig. 8

Schematic of the masking used during the deposition process that enabled the evaluation of the finished AR coating as well as of each separate layer.

Fig. 9
Fig. 9

Comparison of the calculated and measured average reflectances Rav of a wide-angle SiO2-based AR coating (a) as a function of angle, at the wavelength of 7.27 μm. (b) The construction parameters of the manufactured coating are shown in the inset as a function of wavelength, for light incident at 30°, 50°, 60°, 70°, 80°, and 85°.

Fig. 10
Fig. 10

Calculated average transmittance Tav and absorptance Aav (a) for the system of Fig. 9 and (b) for a similar system, but in which the SiO2 layer is nonabsorbing. (c) Measured extinction coefficients of materials used in the AR coating of Fig. 9(a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ( ω ) = ε + 2 π P ω min ω max ω k ( ω ) ω 2 ω 2 d ω .
MSE 2 = 1 2 N M i = 1 N [ ( Ψ i mod Ψ i exp σ Ψ , i exp ) 2 + ( Δ i mod Δ i mod σ Ψ , i exp ) 2 ] = 1 2 N M χ 2 ,

Metrics