Abstract

A manufacturable, broadband, broad-angle antireflection (AR) coating for the visible (13 designs submitted) and a minimum-shift immersed short-pass filter (12 designs submitted) were the subjects of the design contest held in conjunction with the 2004 Optical Interference Coatings topical meeting of the Optical Society of America. Under the specified constraints, the broadband, broad-angle AR coating could be made more than 65nm wide. The statistical stability of manufacturing simulations is discussed. The short-pass filter could operate up to a ±5.5° angular range. The submitted designs are described and evaluated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  2. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, 'Toward perfect antireflection coatings: numerical investigation,' Appl. Opt. 41, 3075-3083 (2002).
    [CrossRef] [PubMed]
  3. S. J. Wilson and M. C. Hutley, 'The optical properties of 'moth eye' antireflection surfaces,' J. Mod. Opt. 29, 993-1009 (1982).
  4. D. H. Raguin and G. Michael-Morris, 'Antireflection structured surfaces for the infrared spectral region,' Appl. Opt. 32, 1154-1167 (1993).
    [CrossRef] [PubMed]
  5. S. F. Pellicori, 'Wide band wide angle reflection-reducing coatings for silicon cells,' Sol. Cells 3, 57-63 (1981).
    [CrossRef]
  6. G. W. DeBell, 'Antireflection coatings utilizing multiple half waves,' in Thin Film Technologies, J. R. Jacobsson, ed., Proc. SPIE, 401, 127-137 (1983).
  7. J. A. Dobrowolski, 'Optical properties of films and coatings,' in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, pp. 42.1-42.130.
  8. A. Thelen and R. Langfeld, 'Coating design contest: antireflection coating for lenses to be used with normal and infrared photographic film,' in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE 1782, 552-601.
  9. J. A. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, and D. Poitras, 'Toward perfect antireflection coatings. 3. Experimental results obtained with the use of reststrahlen materials,' Appl. Opt. 45, 1555-1562 (2006).
    [CrossRef] [PubMed]
  10. P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of perfect antireflection coatings,' in 45th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2002), Vol. 46, pp. 216-219.
  11. A. Thelen, M. Tilsch, A. V. Tikhonravov, M. K. Trubetskov, and U. Brauneck, 'Topical Meeting on Optical Interference Coatings (OIC '2001): design contest results,' Appl. Opt. 41, 3022-3038 (2002).
    [CrossRef] [PubMed]
  12. P. G. Verly, 'Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization,' Appl. Opt. 41, 3092-3096 (2002).
    [CrossRef] [PubMed]
  13. See teachings in R. Bradley, 'Dichroic filters with low nm per degree sensitivity,' U.S. patent 5,999,321 (7 December 1999).
  14. V. Csendes, B. Daroczy, and Z. Hanos, 'Nonlinear parameter estimation by global optimization: comparison of local search methods in respiratory system modelling,' in System Modeling and Optimization (Springer-Verlag, 1986), pp. 188-192.
    [CrossRef]
  15. P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004), p. 5-11.
  16. H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, 1989), p. 315.
  17. P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004), p. 5-22.

2006

2002

1998

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

1993

1982

S. J. Wilson and M. C. Hutley, 'The optical properties of 'moth eye' antireflection surfaces,' J. Mod. Opt. 29, 993-1009 (1982).

1981

S. F. Pellicori, 'Wide band wide angle reflection-reducing coatings for silicon cells,' Sol. Cells 3, 57-63 (1981).
[CrossRef]

Acree, M.

Baumeister, P. W.

P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004), p. 5-11.

P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004), p. 5-22.

Brauneck, U.

Cassidy, T.

P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of perfect antireflection coatings,' in 45th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2002), Vol. 46, pp. 216-219.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Csendes, V.

V. Csendes, B. Daroczy, and Z. Hanos, 'Nonlinear parameter estimation by global optimization: comparison of local search methods in respiratory system modelling,' in System Modeling and Optimization (Springer-Verlag, 1986), pp. 188-192.
[CrossRef]

Daroczy, B.

V. Csendes, B. Daroczy, and Z. Hanos, 'Nonlinear parameter estimation by global optimization: comparison of local search methods in respiratory system modelling,' in System Modeling and Optimization (Springer-Verlag, 1986), pp. 188-192.
[CrossRef]

DeBell, G. W.

G. W. DeBell, 'Antireflection coatings utilizing multiple half waves,' in Thin Film Technologies, J. R. Jacobsson, ed., Proc. SPIE, 401, 127-137 (1983).

Dobrowolski, J. A.

J. A. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, and D. Poitras, 'Toward perfect antireflection coatings. 3. Experimental results obtained with the use of reststrahlen materials,' Appl. Opt. 45, 1555-1562 (2006).
[CrossRef] [PubMed]

J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, 'Toward perfect antireflection coatings: numerical investigation,' Appl. Opt. 41, 3075-3083 (2002).
[CrossRef] [PubMed]

J. A. Dobrowolski, 'Optical properties of films and coatings,' in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, pp. 42.1-42.130.

P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of perfect antireflection coatings,' in 45th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2002), Vol. 46, pp. 216-219.

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Guo, Y.

Hanos, Z.

V. Csendes, B. Daroczy, and Z. Hanos, 'Nonlinear parameter estimation by global optimization: comparison of local search methods in respiratory system modelling,' in System Modeling and Optimization (Springer-Verlag, 1986), pp. 188-192.
[CrossRef]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, 'The optical properties of 'moth eye' antireflection surfaces,' J. Mod. Opt. 29, 993-1009 (1982).

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Langfeld, R.

A. Thelen and R. Langfeld, 'Coating design contest: antireflection coating for lenses to be used with normal and infrared photographic film,' in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE 1782, 552-601.

Lin, F.

P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of perfect antireflection coatings,' in 45th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2002), Vol. 46, pp. 216-219.

Ma, P.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, 1989), p. 315.

Michael-Morris, G.

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Pellicori, S. F.

S. F. Pellicori, 'Wide band wide angle reflection-reducing coatings for silicon cells,' Sol. Cells 3, 57-63 (1981).
[CrossRef]

Poitras, D.

Raguin, D. H.

Thelen, A.

A. Thelen, M. Tilsch, A. V. Tikhonravov, M. K. Trubetskov, and U. Brauneck, 'Topical Meeting on Optical Interference Coatings (OIC '2001): design contest results,' Appl. Opt. 41, 3022-3038 (2002).
[CrossRef] [PubMed]

A. Thelen and R. Langfeld, 'Coating design contest: antireflection coating for lenses to be used with normal and infrared photographic film,' in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE 1782, 552-601.

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Tikhonravov, A. V.

Tilsch, M.

Tiwald, T.

Trubetskov, M. K.

Vakil, H.

Verly, P. G.

Wilson, S. J.

S. J. Wilson and M. C. Hutley, 'The optical properties of 'moth eye' antireflection surfaces,' J. Mod. Opt. 29, 993-1009 (1982).

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Appl. Opt.

J. Mod. Opt.

S. J. Wilson and M. C. Hutley, 'The optical properties of 'moth eye' antireflection surfaces,' J. Mod. Opt. 29, 993-1009 (1982).

Proc. SPIE

A. Thelen and R. Langfeld, 'Coating design contest: antireflection coating for lenses to be used with normal and infrared photographic film,' in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE 1782, 552-601.

Science

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Sol. Cells

S. F. Pellicori, 'Wide band wide angle reflection-reducing coatings for silicon cells,' Sol. Cells 3, 57-63 (1981).
[CrossRef]

Other

G. W. DeBell, 'Antireflection coatings utilizing multiple half waves,' in Thin Film Technologies, J. R. Jacobsson, ed., Proc. SPIE, 401, 127-137 (1983).

J. A. Dobrowolski, 'Optical properties of films and coatings,' in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, pp. 42.1-42.130.

See teachings in R. Bradley, 'Dichroic filters with low nm per degree sensitivity,' U.S. patent 5,999,321 (7 December 1999).

V. Csendes, B. Daroczy, and Z. Hanos, 'Nonlinear parameter estimation by global optimization: comparison of local search methods in respiratory system modelling,' in System Modeling and Optimization (Springer-Verlag, 1986), pp. 188-192.
[CrossRef]

P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004), p. 5-11.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, 1989), p. 315.

P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004), p. 5-22.

P. Ma, J. A. Dobrowolski, D. Poitras, T. Cassidy, and F. Lin, 'Toward the manufacture of perfect antireflection coatings,' in 45th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2002), Vol. 46, pp. 216-219.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Evaluation of design DEMO by program TOL_OIC04.exe.

Fig. 2
Fig. 2

Tests with 500 and 50,000 random system perturbations (iterations) in the error-stability simulations.

Fig. 3
Fig. 3

Broad designs from Table 1. See text for details.

Fig. 4
Fig. 4

Other representative designs from Table 1.

Fig. 5
Fig. 5

Reflectance of design Sharapa1 at the design angles. See text for details.

Fig. 6
Fig. 6

Illustration of the yield losses at the reflectance ripples. See text for details.

Fig. 7
Fig. 7

P-plane transmittance of design LemarchB at angles of incidence from 40° to 50° in 2° increments. The requirement of T p > 94 % is indicated by a line.

Fig. 8
Fig. 8

P-plane reflectance of design LemarchB at angles of incidence from 40° to 50° in 2° increments. The requirement of R p > 98 % is indicated by a line.

Fig. 9
Fig. 9

Minimum T p and R p are plotted over the specified bands versus angle for design LemarchB.

Fig. 10
Fig. 10

P-plane effective values of different refractive indices for light incident from glass ( n = 1.52 ) at different angles.

Fig. 11
Fig. 11

P-plane stop-band width of a quarter-wave stack as a function of immersed angle of incidence for four different index combinations. The black V indicates the minimum stop-band width needed to accommodate the specified 100 nm rejection region and its spectral shift with angle (assuming indices of 1.65 and 2.35).

Fig. 12
Fig. 12

Minimum number of layers needed to obtain 98% reflectance for three quarter-wave stacks of four different index combinations.

Fig. 13
Fig. 13

Wavelength shifts with angle of incidence of the 50% cutoff of a quarter-wave stack for different index combinations. The shift is relative to the wavelength of the 50% cutoff at 45° incidence.

Fig. 14
Fig. 14

Shift of the 50% cutoff point in nanometers from 40° to 50° as a function of the silver layer thickness of the three winning designs. The magnitude of the shift is shown; the 50% point shifts to shorter wavelengths with increasing angle of incidence. The thickness used in each design is indicated by a symbol on the line.

Fig. 15
Fig. 15

95% reflectance bandwidth of the three winning designs as a function of the silver layer thickness. The thickness used in each design is indicated by a symbol on the line.

Tables (4)

Tables Icon

Table 1 Problem A Contest Results Evaluated with Program TOL_OIC04.exe

Tables Icon

Table 2 Contact Information for All Contestants in Alphabetical Order

Tables Icon

Table 3 Problem B Contest Results

Tables Icon

Table 4 Problem B Trends in Submitted Designs

Equations (89)

Equations on this page are rendered with MathJax. Learn more.

65 nm
± 5.5 °
3 %
500 nm
± 1 nm
± 3 nm
500 nm
500 nm
2 nm
R max
R max
R max
R max
3
500 nm
25.67 nm
n = 1.0
n = 1.52
n = 1.38 , 1.45 , 1.65 , 1.8 , 2.05 , 2.35
5 nm
R p > 98 %
675 nm
T p > 94 %
525 nm
n = 1.52
n = 1.38 , 1.45 , 1.65 , 1.8 , 2.05 , 2.35
( n = 0.055 , k = 3.32 )
50 µm
5 nm
68 nm
68 nm
0.5 nm
0.1 nm
0.03 nm
1.2 nm
1 nm
500 565 nm
66.10 nm
66.14 nm
60 nm
66 nm
0.1 nm
700 nm
T p
R p
625 nm
45 ° ± 5.5 °
45 ° ± 5 °
10 nm
5 nm
625 nm
575 675 nm
stop band   ( nm ) = 4 × 625 nm π a sin ( 1 - n ratio p 1 + n ratio p ) ,
n ratio p = n effective H p / n effective L p .
n effective p = n cos [ a sin ( 1.52 sin θ n ) ] .
n ratio p
2.71 / 2.57 = 1.054
( 2.71 / 2.33 = 1.163 )
n ratio p
100 nm
675 nm
40 nm
100 nm
140 nm
191 nm
171 nm
n ratio p
#   of layers = 4   log ( 1 - ρ 1 + ρ ) log ( n ratio p ) ,
( 0.98 = 0.98995 )
> 98 %
n ratio p
2 nm
20 nm
12 nm
2 nm
1 nm
4 5 nm
65 nm
R p > 98 %
Ag
Ag
Ag
Ag
T p > 94 %
R p > 98 %
T p
R p
( n = 1.52 )
100 nm

Metrics