Abstract

Liquid-crystal-on-silicon- (LCoS-) based digital projection systems require high-performance polarizing beam splitters. The classical beam-splitter cube with an immersed interference coating can fulfill these requirements. Practical layer designs can be generated by computer optimization using the classic MacNeille polarizer layer design as the starting layer design. Multilayer structures with 100 nm bandwidth covering the blue, green, or red spectral region and one design covering the whole visible spectral region are designed. In a second step these designs are realized by using plasma-ion-assisted deposition. The performance of the practical beam-splitter cubes is compared with the theoretical performance of the layer designs.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Li and J. A. Dobrowolski, 'High performance thin-film polarizing beam splitter operating at angles greater than the critical angle,' Appl. Opt. 39, 2754-2771 (2000).
    [CrossRef]
  2. R. Perkins, D. Hansen, E. Gardner, J. Thorne, and A. Robbins, 'Broadband wire grid polarizer for the visible spectrum,' U.S. patent 6,122,103 (19 September 2000).
  3. T. Sergan, M. Lavrentovic, J. Kelly, E. Gardner, and D. Hansen, 'Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers,' J. Opt. Soc. Am. A 19, 1872-1885 (2002).
    [CrossRef]
  4. S. M. MacNeille, 'Beam splitter,' U.S. patent 2,403,731 (6 July 1946).
  5. See, e.g., A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989).
  6. L. Li and Z. Pang, 'Thin film polarizing device having metal-dielectric films,' U.S. patent 6,317,264 (13 November 2001).
  7. A. V. Tikhonravov, M. K. Trubetskov, and G. W. Bell, 'Application of the needle optimization technique to the design of optical coatings,' Appl. Opt. 35, 5493-5508 (1996).
    [CrossRef] [PubMed]
  8. A. Zöller, R. Götzelmann, H. Hagedorn, W. Klug, and K. Matl, 'Plasma ion assisted deposition: a powerful technology for the production of optical coatings,' Proc. SPIE 3133, 196-204 (1997).
    [CrossRef]
  9. L. Li and J. A. Dobrowolski, 'Visible broadband, wide-angle, thin-fim multilayer polarizing beam splitter,' Appl. Opt. 35, 2221-2225 (1996).
    [CrossRef] [PubMed]

2002 (1)

2000 (1)

1997 (1)

A. Zöller, R. Götzelmann, H. Hagedorn, W. Klug, and K. Matl, 'Plasma ion assisted deposition: a powerful technology for the production of optical coatings,' Proc. SPIE 3133, 196-204 (1997).
[CrossRef]

1996 (2)

Bell, G. W.

Dobrowolski, J. A.

Gardner, E.

T. Sergan, M. Lavrentovic, J. Kelly, E. Gardner, and D. Hansen, 'Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers,' J. Opt. Soc. Am. A 19, 1872-1885 (2002).
[CrossRef]

R. Perkins, D. Hansen, E. Gardner, J. Thorne, and A. Robbins, 'Broadband wire grid polarizer for the visible spectrum,' U.S. patent 6,122,103 (19 September 2000).

Götzelmann, R.

A. Zöller, R. Götzelmann, H. Hagedorn, W. Klug, and K. Matl, 'Plasma ion assisted deposition: a powerful technology for the production of optical coatings,' Proc. SPIE 3133, 196-204 (1997).
[CrossRef]

Hagedorn, H.

A. Zöller, R. Götzelmann, H. Hagedorn, W. Klug, and K. Matl, 'Plasma ion assisted deposition: a powerful technology for the production of optical coatings,' Proc. SPIE 3133, 196-204 (1997).
[CrossRef]

Hansen, D.

T. Sergan, M. Lavrentovic, J. Kelly, E. Gardner, and D. Hansen, 'Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers,' J. Opt. Soc. Am. A 19, 1872-1885 (2002).
[CrossRef]

R. Perkins, D. Hansen, E. Gardner, J. Thorne, and A. Robbins, 'Broadband wire grid polarizer for the visible spectrum,' U.S. patent 6,122,103 (19 September 2000).

Kelly, J.

Klug, W.

A. Zöller, R. Götzelmann, H. Hagedorn, W. Klug, and K. Matl, 'Plasma ion assisted deposition: a powerful technology for the production of optical coatings,' Proc. SPIE 3133, 196-204 (1997).
[CrossRef]

Lavrentovic, M.

Li, L.

MacNeille, S. M.

S. M. MacNeille, 'Beam splitter,' U.S. patent 2,403,731 (6 July 1946).

Matl, K.

A. Zöller, R. Götzelmann, H. Hagedorn, W. Klug, and K. Matl, 'Plasma ion assisted deposition: a powerful technology for the production of optical coatings,' Proc. SPIE 3133, 196-204 (1997).
[CrossRef]

Pang, Z.

L. Li and Z. Pang, 'Thin film polarizing device having metal-dielectric films,' U.S. patent 6,317,264 (13 November 2001).

Perkins, R.

R. Perkins, D. Hansen, E. Gardner, J. Thorne, and A. Robbins, 'Broadband wire grid polarizer for the visible spectrum,' U.S. patent 6,122,103 (19 September 2000).

Robbins, A.

R. Perkins, D. Hansen, E. Gardner, J. Thorne, and A. Robbins, 'Broadband wire grid polarizer for the visible spectrum,' U.S. patent 6,122,103 (19 September 2000).

Sergan, T.

Thorne, J.

R. Perkins, D. Hansen, E. Gardner, J. Thorne, and A. Robbins, 'Broadband wire grid polarizer for the visible spectrum,' U.S. patent 6,122,103 (19 September 2000).

Tikhonravov, A. V.

Trubetskov, M. K.

Zöller, A.

A. Zöller, R. Götzelmann, H. Hagedorn, W. Klug, and K. Matl, 'Plasma ion assisted deposition: a powerful technology for the production of optical coatings,' Proc. SPIE 3133, 196-204 (1997).
[CrossRef]

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

Proc. SPIE (1)

A. Zöller, R. Götzelmann, H. Hagedorn, W. Klug, and K. Matl, 'Plasma ion assisted deposition: a powerful technology for the production of optical coatings,' Proc. SPIE 3133, 196-204 (1997).
[CrossRef]

Other (4)

S. M. MacNeille, 'Beam splitter,' U.S. patent 2,403,731 (6 July 1946).

See, e.g., A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989).

L. Li and Z. Pang, 'Thin film polarizing device having metal-dielectric films,' U.S. patent 6,317,264 (13 November 2001).

R. Perkins, D. Hansen, E. Gardner, J. Thorne, and A. Robbins, 'Broadband wire grid polarizer for the visible spectrum,' U.S. patent 6,122,103 (19 September 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Plot of the effective index for p polarization as a function of physical index for three angles of incidence (aoi) on the beam-splitter surface (incidence medium and substrate SF-57 optical glass). The vertical lines represent the refractive indices of SiO2, Ta2O5, Al2O3, TiO2, and SF-57 at 550 nm. It can be seen that the effective indices of SiO2 and Ta2O5 are the same for a 40° angle of incidence on the beam-splitter surface.

Fig. 2
Fig. 2

(a) Calculated values of Tp and (b) contrast ratio Tp Ts for different values of the incidence angle (aoi) on the beam-splitter surface for design A. The Tp Ts values greater than 107 are omitted for the sake of clarity.

Fig. 3
Fig. 3

Practical results for the layer design A. The graph in (a) shows the transmission of p-polarized light for incidence angles (aoi) of 0° ± 10° on the entrance surface of the cube. The graph in (b) displays the contrast ratio Tp Ts for the same angles.

Fig. 4
Fig. 4

Practical results for layer design B. The graph in figure (a) shows the transmission of p-polarized light for incidence angles (aoi) of 0° ± 12° on the entrance surface of the cube. The graph in (b) displays the contrast ratio Tp Ts for the same angles.

Fig. 5
Fig. 5

Practical results for layer design C. The graph in (a) shows the transmission of p-polarized light for incidence angles (aoi) of 0° ± 12° on the entrance surface of the cube. The graph in (b) displays the contrast ratio Tp Ts for the same angles.

Fig. 6
Fig. 6

Practical results for layer design D. The graph in (a) shows the transmission of p-polarized light for incidence angles (aoi) of 0° ± 12° on the entrance surface of the cube. The graph in (b) displays the contrast ratio Tp Ts for the same angles.

Tables (1)

Tables Icon

Table 1 Characteristics of Layer Designs for PBS Coatings Obtained by Computer Optimization

Metrics