Abstract

A new basic structure of a dispersive-compensation filter, called a chirped-cavity dispersion-compensator (CCDC) filter, was designed to offer the advantages of small ripples in both reflectance and group-delay dispersion (GDD). This filter provides a high dispersion compensation, like the Gires–Tournois interferometer (GTI) filter, and a wide working bandwidth, like the chirped mirror (CM). The structure of the CCDC is a cavity-type Fabry–Perot filter with a spacer layer (2mH or 2mL) and a chirped high reflector. The CCDC filter can provide a negative GDD of -50fs2 over a bandwidth of 56THz with half the optical thickness of the CM or the GTI.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fibre-Optic Communication Systems (Wiley, 1997).
  2. I. A. Walmsley, L. Waxer, and C. Dorrer, 'The role of dispersion in optics,' Rev. Sci. Instrum. 72, 1-29 (2001).
    [CrossRef]
  3. G. Steinmeyer, 'A review of ultrafast optics and optoelectronics,' J. Opt. A 5, R1-R15 (2003).
    [CrossRef]
  4. R. L. Fork, O. E. Martinez, and J. P. Gordon, 'Negative dispersion using pairs of prisms,' Opt. Lett. 9, 150-152 (1984).
    [CrossRef] [PubMed]
  5. R. E. Sherriff, 'Analytic expressions for group-delay dispersion and cubic dispersion in arbitrary prism sequences,' J. Opt. Soc. Am. B 15, 1224-1230 (1998).
    [CrossRef]
  6. E. B. Treacy, 'Optical pulse compression with diffraction gratings,' IEEE J. Quantum Electron. 5, 454-458 (1969).
    [CrossRef]
  7. M. C. Parker and S. D. Walker, 'Multiple-order adaptive dispersion compensation using polynomially-chirped grating devices,' Appl. Phys. B 73, 635-645 (2001).
  8. F. Ouellette, 'Dispersion cancellation using linearly chirped Bragg grating filters in optical wave-guides,' Opt. Lett. 12, 847-849 (1987).
    [CrossRef] [PubMed]
  9. M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, 'Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass-filters produced by the use of an amplitude mask,' Electron. Lett. 30, 891-892 (1994).
    [CrossRef]
  10. L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, 'Generation of sub-6 fs blue pulses by frequency doubling with quasi-phase-matching gratings,' Opt. Lett. 26, 614-616 (2001).
    [CrossRef]
  11. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, 'Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,' J. Opt. Soc. Am. B 17, 304-318 (2000).
    [CrossRef]
  12. M. K. Smit, 'New focusing and dispersive planar component based on optical phased array,' Electron. Lett. 24, 385-386 (1988).
    [CrossRef]
  13. C. Dragone, 'An N×N optical multiplexer using a planar arrangement of 2 star couplers,' IEEE Photon. Technol. Lett. 3, 812-815 (1991).
    [CrossRef]
  14. H. Takahashi, I. Nishi, and Y. Hibino, '10 GHz spacing optical frequency-division multiplexer based on arrayed waveguide grating,' Electron. Lett. 28, 380-382 (1992).
    [CrossRef]
  15. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, 'Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,' Opt. Lett. 19, 201-203 (1994).
    [CrossRef] [PubMed]
  16. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, 'Design and fabrication of double-chirped mirrors,' Opt. Lett. 22, 831-833 (1997).
    [CrossRef] [PubMed]
  17. N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
    [CrossRef]
  18. F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression d'impulsions lumineuses modules en frèquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).
  19. J. Heppner and J. Kuhl, 'Intracavity chirp compensation in a colliding pulse mode-locked laser using thin-film interferometers,' Appl. Phys. Lett. 47, 453-455 (1985).
    [CrossRef]
  20. A. Stingl, C. Spielmann, and F. Krausz, 'Generation of 11 fs pulses from a Ti:sapphire laser without the use of prisms,' Opt. Lett. 19, 204-206 (1994).
    [CrossRef] [PubMed]
  21. B. Golubovic, R. R. Austin, M. K. Steiner-Shephard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. VanEngen, 'Double Gires-Tournois interferometer negative dispersion mirror for use in tunable mode-locked lasers,' Opt. Lett. 25, 275-277 (2000).
    [CrossRef]
  22. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
    [CrossRef]
  23. G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, 'Tilted-front-interface chirped mirrors,' J. Opt. Soc. Am. B 18, 1747-1750 (2001).
    [CrossRef]
  24. U. Keller, 'New frontiers in ultrafast all-solid-state lasers,' Proceedings 2000 IEEE/LEOS Symposium Benelux Chapter (Institute of Electrical and Electronics Engineers, 2000), pp. 5-8.
  25. W. Dietel, E. Dbpel, K. Hehl, W. Rudolph, and E. Schmidt, 'Multilayer dielectric mirrors generated chirp in femtosecond dye-ring lasers,' Opt. Commun. 50, 179-182 (1984).
    [CrossRef]
  26. S. De Silvestri, P. Laporta, and O. Svelto, 'Analysis of quarter-wave dielectric-mirror dispersion in femtosecond dye-laser cavities,' Opt. Lett. 9, 335-337 (1984).
    [CrossRef] [PubMed]
  27. W. H. Knox, N. M. Pearson, K. D. Li, and Ch. A. Hirlimann, 'Interferometric measurements of femtosecond group delay in optical components,' Opt. Lett. 13, 574-576 (1988).
    [CrossRef] [PubMed]
  28. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001).
    [CrossRef]
  29. N. Matuschek, F. X. Kartner, D. H. Sutter, I. D. Jung, and U. Keller, 'Design of broadband double-chirped mirrors for the generation of sub-10 fs laser pulses,' in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 296-298.
  30. R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

2003 (1)

G. Steinmeyer, 'A review of ultrafast optics and optoelectronics,' J. Opt. A 5, R1-R15 (2003).
[CrossRef]

2001 (4)

M. C. Parker and S. D. Walker, 'Multiple-order adaptive dispersion compensation using polynomially-chirped grating devices,' Appl. Phys. B 73, 635-645 (2001).

I. A. Walmsley, L. Waxer, and C. Dorrer, 'The role of dispersion in optics,' Rev. Sci. Instrum. 72, 1-29 (2001).
[CrossRef]

L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, 'Generation of sub-6 fs blue pulses by frequency doubling with quasi-phase-matching gratings,' Opt. Lett. 26, 614-616 (2001).
[CrossRef]

G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, 'Tilted-front-interface chirped mirrors,' J. Opt. Soc. Am. B 18, 1747-1750 (2001).
[CrossRef]

2000 (4)

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, 'Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,' J. Opt. Soc. Am. B 17, 304-318 (2000).
[CrossRef]

B. Golubovic, R. R. Austin, M. K. Steiner-Shephard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. VanEngen, 'Double Gires-Tournois interferometer negative dispersion mirror for use in tunable mode-locked lasers,' Opt. Lett. 25, 275-277 (2000).
[CrossRef]

1999 (1)

N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
[CrossRef]

1998 (1)

1997 (1)

1994 (3)

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, 'Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,' Opt. Lett. 19, 201-203 (1994).
[CrossRef] [PubMed]

A. Stingl, C. Spielmann, and F. Krausz, 'Generation of 11 fs pulses from a Ti:sapphire laser without the use of prisms,' Opt. Lett. 19, 204-206 (1994).
[CrossRef] [PubMed]

M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, 'Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass-filters produced by the use of an amplitude mask,' Electron. Lett. 30, 891-892 (1994).
[CrossRef]

1992 (1)

H. Takahashi, I. Nishi, and Y. Hibino, '10 GHz spacing optical frequency-division multiplexer based on arrayed waveguide grating,' Electron. Lett. 28, 380-382 (1992).
[CrossRef]

1991 (1)

C. Dragone, 'An N×N optical multiplexer using a planar arrangement of 2 star couplers,' IEEE Photon. Technol. Lett. 3, 812-815 (1991).
[CrossRef]

1988 (2)

1987 (1)

1985 (1)

J. Heppner and J. Kuhl, 'Intracavity chirp compensation in a colliding pulse mode-locked laser using thin-film interferometers,' Appl. Phys. Lett. 47, 453-455 (1985).
[CrossRef]

1984 (3)

1969 (1)

E. B. Treacy, 'Optical pulse compression with diffraction gratings,' IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

1964 (1)

F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression d'impulsions lumineuses modules en frèquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).

Agrawal, G. P.

G. P. Agrawal, Fibre-Optic Communication Systems (Wiley, 1997).

Apai, P.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Arbore, M. A.

Austin, R. R.

Bacovic, B.

Bennion, I.

M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, 'Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass-filters produced by the use of an amplitude mask,' Electron. Lett. 30, 891-892 (1994).
[CrossRef]

Dbpel, E.

W. Dietel, E. Dbpel, K. Hehl, W. Rudolph, and E. Schmidt, 'Multilayer dielectric mirrors generated chirp in femtosecond dye-ring lasers,' Opt. Commun. 50, 179-182 (1984).
[CrossRef]

De Silvestri, S.

Debell, G.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Diddams, S. A.

Dietel, W.

W. Dietel, E. Dbpel, K. Hehl, W. Rudolph, and E. Schmidt, 'Multilayer dielectric mirrors generated chirp in femtosecond dye-ring lasers,' Opt. Commun. 50, 179-182 (1984).
[CrossRef]

Dorrer, C.

I. A. Walmsley, L. Waxer, and C. Dorrer, 'The role of dispersion in optics,' Rev. Sci. Instrum. 72, 1-29 (2001).
[CrossRef]

Dragone, C.

C. Dragone, 'An N×N optical multiplexer using a planar arrangement of 2 star couplers,' IEEE Photon. Technol. Lett. 3, 812-815 (1991).
[CrossRef]

Farries, M. C.

M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, 'Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass-filters produced by the use of an amplitude mask,' Electron. Lett. 30, 891-892 (1994).
[CrossRef]

Fejer, M. M.

Ferencz, K.

Fermann, M.

Fork, R. L.

Gallmann, L.

L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, 'Generation of sub-6 fs blue pulses by frequency doubling with quasi-phase-matching gratings,' Opt. Lett. 26, 614-616 (2001).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

Galvanauskas, A.

Gires, F.

F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression d'impulsions lumineuses modules en frèquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).

Golubovic, B.

Goodwin, M. J.

M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, 'Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass-filters produced by the use of an amplitude mask,' Electron. Lett. 30, 891-892 (1994).
[CrossRef]

Gordon, J. P.

Harter, D.

Haus, H. A.

Hehl, K.

W. Dietel, E. Dbpel, K. Hehl, W. Rudolph, and E. Schmidt, 'Multilayer dielectric mirrors generated chirp in femtosecond dye-ring lasers,' Opt. Commun. 50, 179-182 (1984).
[CrossRef]

Heine, C.

Heppner, J.

J. Heppner and J. Kuhl, 'Intracavity chirp compensation in a colliding pulse mode-locked laser using thin-film interferometers,' Appl. Phys. Lett. 47, 453-455 (1985).
[CrossRef]

Hibino, Y.

H. Takahashi, I. Nishi, and Y. Hibino, '10 GHz spacing optical frequency-division multiplexer based on arrayed waveguide grating,' Electron. Lett. 28, 380-382 (1992).
[CrossRef]

Hirlimann, Ch. A.

Imeshev, G.

Jones, D. J.

Jung, I. D.

N. Matuschek, F. X. Kartner, D. H. Sutter, I. D. Jung, and U. Keller, 'Design of broadband double-chirped mirrors for the generation of sub-10 fs laser pulses,' in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 296-298.

Kartner, F. X.

N. Matuschek, F. X. Kartner, D. H. Sutter, I. D. Jung, and U. Keller, 'Design of broadband double-chirped mirrors for the generation of sub-10 fs laser pulses,' in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 296-298.

Kärtner, F. X.

N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
[CrossRef]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, 'Design and fabrication of double-chirped mirrors,' Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

Keller, U.

L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, 'Generation of sub-6 fs blue pulses by frequency doubling with quasi-phase-matching gratings,' Opt. Lett. 26, 614-616 (2001).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
[CrossRef]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, 'Design and fabrication of double-chirped mirrors,' Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

U. Keller, 'New frontiers in ultrafast all-solid-state lasers,' Proceedings 2000 IEEE/LEOS Symposium Benelux Chapter (Institute of Electrical and Electronics Engineers, 2000), pp. 5-8.

N. Matuschek, F. X. Kartner, D. H. Sutter, I. D. Jung, and U. Keller, 'Design of broadband double-chirped mirrors for the generation of sub-10 fs laser pulses,' in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 296-298.

Knox, W. H.

Köházi-Kis, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Kovács, A. P.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Krausz, F.

Kuhl, J.

J. Heppner and J. Kuhl, 'Intracavity chirp compensation in a colliding pulse mode-locked laser using thin-film interferometers,' Appl. Phys. Lett. 47, 453-455 (1985).
[CrossRef]

Lakó, S.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Laporta, P.

Li, K. D.

Louderback, A. W.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001).
[CrossRef]

Martinez, O. E.

Matuschek, N.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
[CrossRef]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, 'Design and fabrication of double-chirped mirrors,' Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

N. Matuschek, F. X. Kartner, D. H. Sutter, I. D. Jung, and U. Keller, 'Design of broadband double-chirped mirrors for the generation of sub-10 fs laser pulses,' in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 296-298.

Meyn, J.-P.

Molony, A.

M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, 'Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass-filters produced by the use of an amplitude mask,' Electron. Lett. 30, 891-892 (1994).
[CrossRef]

Morf, R.

Mott, L.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Nishi, I.

H. Takahashi, I. Nishi, and Y. Hibino, '10 GHz spacing optical frequency-division multiplexer based on arrayed waveguide grating,' Electron. Lett. 28, 380-382 (1992).
[CrossRef]

Ouellette, F.

Parker, M. C.

M. C. Parker and S. D. Walker, 'Multiple-order adaptive dispersion compensation using polynomially-chirped grating devices,' Appl. Phys. B 73, 635-645 (2001).

Pearson, N. M.

Reed, M. K.

Reid, D. C. J.

M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, 'Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass-filters produced by the use of an amplitude mask,' Electron. Lett. 30, 891-892 (1994).
[CrossRef]

Rudolph, W.

W. Dietel, E. Dbpel, K. Hehl, W. Rudolph, and E. Schmidt, 'Multilayer dielectric mirrors generated chirp in femtosecond dye-ring lasers,' Opt. Commun. 50, 179-182 (1984).
[CrossRef]

Scheuer, V.

Schibli, T.

Schmidt, E.

W. Dietel, E. Dbpel, K. Hehl, W. Rudolph, and E. Schmidt, 'Multilayer dielectric mirrors generated chirp in femtosecond dye-ring lasers,' Opt. Commun. 50, 179-182 (1984).
[CrossRef]

Sherriff, R. E.

Smit, M. K.

M. K. Smit, 'New focusing and dispersive planar component based on optical phased array,' Electron. Lett. 24, 385-386 (1988).
[CrossRef]

Spielmann, C.

Steiner-Shephard, M. K.

Steinmeyer, G.

G. Steinmeyer, 'A review of ultrafast optics and optoelectronics,' J. Opt. A 5, R1-R15 (2003).
[CrossRef]

L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, 'Generation of sub-6 fs blue pulses by frequency doubling with quasi-phase-matching gratings,' Opt. Lett. 26, 614-616 (2001).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

Stingl, A.

Sugden, K.

M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, 'Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass-filters produced by the use of an amplitude mask,' Electron. Lett. 30, 891-892 (1994).
[CrossRef]

Sutter, D. H.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

N. Matuschek, F. X. Kartner, D. H. Sutter, I. D. Jung, and U. Keller, 'Design of broadband double-chirped mirrors for the generation of sub-10 fs laser pulses,' in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 296-298.

Svelto, O.

Szipöcs, R.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, 'Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,' Opt. Lett. 19, 201-203 (1994).
[CrossRef] [PubMed]

Takahashi, H.

H. Takahashi, I. Nishi, and Y. Hibino, '10 GHz spacing optical frequency-division multiplexer based on arrayed waveguide grating,' Electron. Lett. 28, 380-382 (1992).
[CrossRef]

Tempea, G.

Tikhonravov, A. V.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Tilsch, M.

Tournois, P.

F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression d'impulsions lumineuses modules en frèquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).

Treacy, E. B.

E. B. Treacy, 'Optical pulse compression with diffraction gratings,' IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Trubetskov, M. K.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Tschudi, T.

VanEngen, A. G.

Walker, S. D.

M. C. Parker and S. D. Walker, 'Multiple-order adaptive dispersion compensation using polynomially-chirped grating devices,' Appl. Phys. B 73, 635-645 (2001).

Walmsley, I. A.

I. A. Walmsley, L. Waxer, and C. Dorrer, 'The role of dispersion in optics,' Rev. Sci. Instrum. 72, 1-29 (2001).
[CrossRef]

Waxer, L.

I. A. Walmsley, L. Waxer, and C. Dorrer, 'The role of dispersion in optics,' Rev. Sci. Instrum. 72, 1-29 (2001).
[CrossRef]

Yakovlev, V.

Appl. Phys. B (3)

M. C. Parker and S. D. Walker, 'Multiple-order adaptive dispersion compensation using polynomially-chirped grating devices,' Appl. Phys. B 73, 635-645 (2001).

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000).
[CrossRef]

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Appl. Phys. Lett. (1)

J. Heppner and J. Kuhl, 'Intracavity chirp compensation in a colliding pulse mode-locked laser using thin-film interferometers,' Appl. Phys. Lett. 47, 453-455 (1985).
[CrossRef]

C. R. Acad. Sci. (1)

F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression d'impulsions lumineuses modules en frèquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).

Electron. Lett. (3)

H. Takahashi, I. Nishi, and Y. Hibino, '10 GHz spacing optical frequency-division multiplexer based on arrayed waveguide grating,' Electron. Lett. 28, 380-382 (1992).
[CrossRef]

M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, 'Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass-filters produced by the use of an amplitude mask,' Electron. Lett. 30, 891-892 (1994).
[CrossRef]

M. K. Smit, 'New focusing and dispersive planar component based on optical phased array,' Electron. Lett. 24, 385-386 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. B. Treacy, 'Optical pulse compression with diffraction gratings,' IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Dragone, 'An N×N optical multiplexer using a planar arrangement of 2 star couplers,' IEEE Photon. Technol. Lett. 3, 812-815 (1991).
[CrossRef]

J. Opt. A (1)

G. Steinmeyer, 'A review of ultrafast optics and optoelectronics,' J. Opt. A 5, R1-R15 (2003).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

W. Dietel, E. Dbpel, K. Hehl, W. Rudolph, and E. Schmidt, 'Multilayer dielectric mirrors generated chirp in femtosecond dye-ring lasers,' Opt. Commun. 50, 179-182 (1984).
[CrossRef]

Opt. Lett. (9)

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, 'Design and fabrication of double-chirped mirrors,' Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

F. Ouellette, 'Dispersion cancellation using linearly chirped Bragg grating filters in optical wave-guides,' Opt. Lett. 12, 847-849 (1987).
[CrossRef] [PubMed]

L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, 'Generation of sub-6 fs blue pulses by frequency doubling with quasi-phase-matching gratings,' Opt. Lett. 26, 614-616 (2001).
[CrossRef]

B. Golubovic, R. R. Austin, M. K. Steiner-Shephard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. VanEngen, 'Double Gires-Tournois interferometer negative dispersion mirror for use in tunable mode-locked lasers,' Opt. Lett. 25, 275-277 (2000).
[CrossRef]

R. L. Fork, O. E. Martinez, and J. P. Gordon, 'Negative dispersion using pairs of prisms,' Opt. Lett. 9, 150-152 (1984).
[CrossRef] [PubMed]

S. De Silvestri, P. Laporta, and O. Svelto, 'Analysis of quarter-wave dielectric-mirror dispersion in femtosecond dye-laser cavities,' Opt. Lett. 9, 335-337 (1984).
[CrossRef] [PubMed]

W. H. Knox, N. M. Pearson, K. D. Li, and Ch. A. Hirlimann, 'Interferometric measurements of femtosecond group delay in optical components,' Opt. Lett. 13, 574-576 (1988).
[CrossRef] [PubMed]

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, 'Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,' Opt. Lett. 19, 201-203 (1994).
[CrossRef] [PubMed]

A. Stingl, C. Spielmann, and F. Krausz, 'Generation of 11 fs pulses from a Ti:sapphire laser without the use of prisms,' Opt. Lett. 19, 204-206 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

I. A. Walmsley, L. Waxer, and C. Dorrer, 'The role of dispersion in optics,' Rev. Sci. Instrum. 72, 1-29 (2001).
[CrossRef]

Other (4)

G. P. Agrawal, Fibre-Optic Communication Systems (Wiley, 1997).

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001).
[CrossRef]

N. Matuschek, F. X. Kartner, D. H. Sutter, I. D. Jung, and U. Keller, 'Design of broadband double-chirped mirrors for the generation of sub-10 fs laser pulses,' in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 296-298.

U. Keller, 'New frontiers in ultrafast all-solid-state lasers,' Proceedings 2000 IEEE/LEOS Symposium Benelux Chapter (Institute of Electrical and Electronics Engineers, 2000), pp. 5-8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Reflectance and reflectance GDD of (a) CM, (b) GTI, and (c) CCDC.

Fig. 2
Fig. 2

Refractive-index profile of the CCDC filter.

Fig. 3
Fig. 3

Computed reflectance and reflectance GDD of the CCDC filter.

Tables (2)

Tables Icon

Table 1 Optical Properties of the CCDC, GTI, and CM

Tables Icon

Table 2 Comparing the Designs of the CCDC with Those of the GTI and the CM in the Sub–10 fs Ti:sapphire Laser System

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

glass∕(chirped stacks ) m / air .
glass∕(quarter-wave stacks) m ( spacer layer   2 n H   or   2 n L ) ( quarter-wave stacks)∕air.
glass∕(chirped stacks ) m ( spacer layer   2 m H or 2 m L ) ( chirped stacks)∕air.
CM :   glass∕1.72H 1.64L 1.56H 1.48L 1.40H   1.32L 1.24H 1.16L 1.08H 1.00L 0.92H 0.84L   0.76H 0.68L 0.60H∕air,
GTI : glass∕(H L) 5 2 H ( LH ) 2 / air ,
CCDC :   glass∕(1.28H 1.24L 1.20H 1.16L 1.12H   1.08L 1.04H 1.00L 0.96H 0.92L) 2H   (0.88L 0.84H 0.80L 0.76H)∕air,
glass∕(1.136H 1.021L 1.133H 0.976L 1.124H   0.940L 0.966H 0.936L 0.948H 0.932L 0.903H   0.869L 0.857H 0.853L 0.856H 0.614L) 2L   (0.056L 0.948H 0.819L 0.520H 1.459L)∕air,  

Metrics