Abstract

The efficiency of thermophotovoltaic (TPV) energy conversion is dependent on efficient spectral control. An edge pass filter (short pass) in series with a highly doped, epitaxially grown layer has achieved the highest performance of TPV spectral control.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Hickey, M. Trahan-Verma, and D. M. DePoy, 'Antimony selenide in multilayer coatings,' in Optical Interference Coatings,T.J.Coutts, J.B.Benner, and C.S.Allman, eds., Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper ThE4-1/3.
  2. D. M. Depoy, R. J. Dziendziel, G. W. Charache, P. F. Baldasaro, and B. C. Campbell, 'Interference filters for thermophotovoltaic applications' in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC5-1/2.
  3. U. Ortabasi and B. Bovard, 'Rugate technology for thermophotovoltaic (TPV) applications: a new approach to near perfect filter performance,' in Thermophotovoltaic Generation of Electricity: Fifth Conference,T.J.Coutts, G.Guazzoni, and J.Luther, eds. (American Institute of Physics, Melville, New York, 2003), pp. 241-248.
  4. K. Jarefors, L. Broman, and J. Marks, 'Optical interference filters in thermophotovoltaic applications,' in Optical Interference Coatings, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC6-1/3.
  5. B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
    [Crossref]

2004 (1)

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Baldasaro, P. F.

D. M. Depoy, R. J. Dziendziel, G. W. Charache, P. F. Baldasaro, and B. C. Campbell, 'Interference filters for thermophotovoltaic applications' in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC5-1/2.

Broman, L.

K. Jarefors, L. Broman, and J. Marks, 'Optical interference filters in thermophotovoltaic applications,' in Optical Interference Coatings, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC6-1/3.

Campbell, B. C.

D. M. Depoy, R. J. Dziendziel, G. W. Charache, P. F. Baldasaro, and B. C. Campbell, 'Interference filters for thermophotovoltaic applications' in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC5-1/2.

Charache, G. W.

D. M. Depoy, R. J. Dziendziel, G. W. Charache, P. F. Baldasaro, and B. C. Campbell, 'Interference filters for thermophotovoltaic applications' in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC5-1/2.

DePoy, D. M.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

C. F. Hickey, M. Trahan-Verma, and D. M. DePoy, 'Antimony selenide in multilayer coatings,' in Optical Interference Coatings,T.J.Coutts, J.B.Benner, and C.S.Allman, eds., Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper ThE4-1/3.

D. M. Depoy, R. J. Dziendziel, G. W. Charache, P. F. Baldasaro, and B. C. Campbell, 'Interference filters for thermophotovoltaic applications' in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC5-1/2.

Dziendziel, R. J.

D. M. Depoy, R. J. Dziendziel, G. W. Charache, P. F. Baldasaro, and B. C. Campbell, 'Interference filters for thermophotovoltaic applications' in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC5-1/2.

Hickey, C. F.

C. F. Hickey, M. Trahan-Verma, and D. M. DePoy, 'Antimony selenide in multilayer coatings,' in Optical Interference Coatings,T.J.Coutts, J.B.Benner, and C.S.Allman, eds., Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper ThE4-1/3.

Jarefors, K.

K. Jarefors, L. Broman, and J. Marks, 'Optical interference filters in thermophotovoltaic applications,' in Optical Interference Coatings, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC6-1/3.

Link, S. D.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Marks, J.

K. Jarefors, L. Broman, and J. Marks, 'Optical interference filters in thermophotovoltaic applications,' in Optical Interference Coatings, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC6-1/3.

Messham, R. L.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Mohorter, R. G.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Murray, C. S.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Murray, S.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Newman, F.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Ortabasi, U.

U. Ortabasi and B. Bovard, 'Rugate technology for thermophotovoltaic (TPV) applications: a new approach to near perfect filter performance,' in Thermophotovoltaic Generation of Electricity: Fifth Conference,T.J.Coutts, G.Guazzoni, and J.Luther, eds. (American Institute of Physics, Melville, New York, 2003), pp. 241-248.

Palmisiano, M. N.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Rahmlow, T. D.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Schmuck, G. P.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Schultz, R. W.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Siergiej, R. R.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Taylor, D.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Trahan-Verma, M.

C. F. Hickey, M. Trahan-Verma, and D. M. DePoy, 'Antimony selenide in multilayer coatings,' in Optical Interference Coatings,T.J.Coutts, J.B.Benner, and C.S.Allman, eds., Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper ThE4-1/3.

Wehrer, R. J.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Wernsman, B.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

IEEE Trans. Electron Devices (1)

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mohorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. D. Rahmlow, Jr., 'Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,' IEEE Trans. Electron Devices 31, 512-515 (2004).
[Crossref]

Other (4)

C. F. Hickey, M. Trahan-Verma, and D. M. DePoy, 'Antimony selenide in multilayer coatings,' in Optical Interference Coatings,T.J.Coutts, J.B.Benner, and C.S.Allman, eds., Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper ThE4-1/3.

D. M. Depoy, R. J. Dziendziel, G. W. Charache, P. F. Baldasaro, and B. C. Campbell, 'Interference filters for thermophotovoltaic applications' in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC5-1/2.

U. Ortabasi and B. Bovard, 'Rugate technology for thermophotovoltaic (TPV) applications: a new approach to near perfect filter performance,' in Thermophotovoltaic Generation of Electricity: Fifth Conference,T.J.Coutts, G.Guazzoni, and J.Luther, eds. (American Institute of Physics, Melville, New York, 2003), pp. 241-248.

K. Jarefors, L. Broman, and J. Marks, 'Optical interference filters in thermophotovoltaic applications,' in Optical Interference Coatings, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper ThC6-1/3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Configuration of front surface, tandem filter for thermophotovoltaic energy conversion:(a) diagram of the configuration, and (b) representative reflectance performance at 45° angle of incidence (AOI) for a front surface, tandem filter and each individual component (edge pass filter and epitaxially grown layer).

Fig. 2
Fig. 2

Front surface, tandem filter performance for thermophotovoltaic energy conversion:(a) design (thin curves) and measured (thick curves) reflectance for 0.52 eV bandgap tandem filter at 45° angle of incidence (AOI) with energy weighted, merit functions for design of ηspectral ∼ 84% and T >Eg ∼ 81% and for measured of ηspectral ∼ 83% and T >Eg ∼ 79%, and (b) design and measured reflectance for 0.60 eV bandgap tandem filter at 45° angle of incidence (AOI) with energy weighted, merit functions for design of ηspectral ∼ 79% and T >Eg ∼ 80% and for measured of ηspectral ∼ 76% and T >Eg ∼ 78%. Calculated merit functions are for T radiator = 950 °C, T diode = 50 °C, and εradiator = 1.

Fig. 3
Fig. 3

Measured angle of incidence performance of front surface, tandem filter performance for thermophotovoltaic energy conversion:(a) measured reflectance for 0.52 eV bandgap tandem filter at various angles of incident (shown), and (b) measured reflectance for 0.60 eV bandgap tandem filter at various angles of incident (shown).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η s p e c t r a l = 0 π 2 0 λ g ε e f f ( λ , θ , T r a d ) T f i l t e r ( λ , θ ) 1 - R f i l t e r ( λ , θ ) N ( λ , T r a d ) sin θ cos θdλd θ 0 π 2 0 ε e f f ( λ , θ , T r a d ) N ( λ , T r a d ) sin θ cos θdλdθ ,
T > Eg = 0 π 2 0 λ g ε e f f ( λ , θ , T r a d ) T f i l t e r ( λ , θ ) 1 - R f i l t e r ( λ , θ ) N ( λ , T r a d ) sin θ cos θdλd θ 0 π 2 0 λ g ε r a d ( λ , θ , T r a d ) N ( λ , T r a d ) sin θ cos θdλd θ ,
ε e f f ( λ , θ , T r a d ) = 1 1 ε r a d ( λ , θ , T r a d ) + 1 1 - R f i l t e r ( λ , θ ) 1 .

Metrics