Abstract

Solid-spaced filters are composed of one or several thin wafers of excellent optical quality acting as Fabry–Perot spacer layers. We study the different steps of the design and the manufacture of filters following dense-wavelength-division-multiplexing specifications. The design method of such filters requires a tight synergy between numerical simulations and experimental characterizations to correct possible thickness errors. Experimental results of the manufacture and characterization of a three-cavity narrow-bandpass filter and of an interleaver filter are given.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lequime, C. Deumié, and C. Amra, 'Light scattering from WDM filters,' in Advances in Optical Interference Coatings, C. Amra and A. Macleod, eds., Proc. SPIE 3738, 268-277 (1999).
    [CrossRef]
  2. J. A. Dobrowolski, 'Mica interference filters with transmission bands of very narrow half-widths,' J. Opt. Soc. Am. 49, 794-806 (1959).
    [CrossRef]
  3. R. R. Austin, 'The use of solid etalon devices as narrowband interference filters,' Opt. Eng. 11, 68-69 (1972).
  4. S. D. Smith and C. R. Pidgeon, 'Application of multiple beam interferometric methods to the study of CO2 emission at 15 µm,' Mem. Soc. R. Sci. Liege Collect. 5° 9, 336-349 (1963).
  5. A. E. Roche and A. M. Title, 'Tilt tunable ultra narrow-band filters for high resolution photometry,' Appl. Opt. 14, 765-770 (1974).
    [CrossRef]
  6. J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
    [CrossRef]
  7. J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
    [CrossRef]
  8. P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
    [CrossRef]
  9. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
    [CrossRef]
  10. M. Bass and E. W. Van Sryland, Handbook of Optics, 2nd ed. (McGraw-Hill, 1994), Vol. 1., p. 42-12.
  11. J. Floriot, 'Filtres bande étroite à cavités-substrats--application au domaine des télécommunications optiques', Ph.D. thesis (Université Paul Cézanne, Marseille, 2004).

2004 (1)

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

2003 (2)

J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
[CrossRef]

J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
[CrossRef]

1999 (1)

M. Lequime, C. Deumié, and C. Amra, 'Light scattering from WDM filters,' in Advances in Optical Interference Coatings, C. Amra and A. Macleod, eds., Proc. SPIE 3738, 268-277 (1999).
[CrossRef]

1974 (1)

1972 (1)

R. R. Austin, 'The use of solid etalon devices as narrowband interference filters,' Opt. Eng. 11, 68-69 (1972).

1963 (1)

S. D. Smith and C. R. Pidgeon, 'Application of multiple beam interferometric methods to the study of CO2 emission at 15 µm,' Mem. Soc. R. Sci. Liege Collect. 5° 9, 336-349 (1963).

1959 (1)

Amra, C.

M. Lequime, C. Deumié, and C. Amra, 'Light scattering from WDM filters,' in Advances in Optical Interference Coatings, C. Amra and A. Macleod, eds., Proc. SPIE 3738, 268-277 (1999).
[CrossRef]

Austin, R. R.

R. R. Austin, 'The use of solid etalon devices as narrowband interference filters,' Opt. Eng. 11, 68-69 (1972).

Bass, M.

M. Bass and E. W. Van Sryland, Handbook of Optics, 2nd ed. (McGraw-Hill, 1994), Vol. 1., p. 42-12.

Baumeister, P. W.

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
[CrossRef]

Cao, S.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Chen, J.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Damask, J. N.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Deumié, C.

M. Lequime, C. Deumié, and C. Amra, 'Light scattering from WDM filters,' in Advances in Optical Interference Coatings, C. Amra and A. Macleod, eds., Proc. SPIE 3738, 268-277 (1999).
[CrossRef]

Dobrowolski, J. A.

Doerr, C. R.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Floriot, J.

J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
[CrossRef]

J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
[CrossRef]

J. Floriot, 'Filtres bande étroite à cavités-substrats--application au domaine des télécommunications optiques', Ph.D. thesis (Université Paul Cézanne, Marseille, 2004).

Guiziou, L.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Harvey, G.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Hibino, Y.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Lemarchand, F.

J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
[CrossRef]

J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
[CrossRef]

Lequime, M.

J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
[CrossRef]

J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
[CrossRef]

M. Lequime, C. Deumié, and C. Amra, 'Light scattering from WDM filters,' in Advances in Optical Interference Coatings, C. Amra and A. Macleod, eds., Proc. SPIE 3738, 268-277 (1999).
[CrossRef]

Li, H.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Pidgeon, C. R.

S. D. Smith and C. R. Pidgeon, 'Application of multiple beam interferometric methods to the study of CO2 emission at 15 µm,' Mem. Soc. R. Sci. Liege Collect. 5° 9, 336-349 (1963).

Roche, A. E.

Smith, S. D.

S. D. Smith and C. R. Pidgeon, 'Application of multiple beam interferometric methods to the study of CO2 emission at 15 µm,' Mem. Soc. R. Sci. Liege Collect. 5° 9, 336-349 (1963).

Suzuki, S.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Title, A. M.

Van Sryland, E. W.

M. Bass and E. W. Van Sryland, Handbook of Optics, 2nd ed. (McGraw-Hill, 1994), Vol. 1., p. 42-12.

Wu, K.-Y.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Xie, P.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

Appl. Opt. (1)

J. Lightwave Technol. (1)

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, 'Interleaver technology: comparisons and applications requirements,' J. Lightwave Technol. LT-22, 281-290 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Mem. Soc. R. Sci. Liege Collect. 5° (1)

S. D. Smith and C. R. Pidgeon, 'Application of multiple beam interferometric methods to the study of CO2 emission at 15 µm,' Mem. Soc. R. Sci. Liege Collect. 5° 9, 336-349 (1963).

Opt. Commun. (1)

J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
[CrossRef]

Opt. Eng. (1)

R. R. Austin, 'The use of solid etalon devices as narrowband interference filters,' Opt. Eng. 11, 68-69 (1972).

Proc. SPIE (2)

M. Lequime, C. Deumié, and C. Amra, 'Light scattering from WDM filters,' in Advances in Optical Interference Coatings, C. Amra and A. Macleod, eds., Proc. SPIE 3738, 268-277 (1999).
[CrossRef]

J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
[CrossRef]

Other (3)

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
[CrossRef]

M. Bass and E. W. Van Sryland, Handbook of Optics, 2nd ed. (McGraw-Hill, 1994), Vol. 1., p. 42-12.

J. Floriot, 'Filtres bande étroite à cavités-substrats--application au domaine des télécommunications optiques', Ph.D. thesis (Université Paul Cézanne, Marseille, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Four-cavity SSF design following DWDM requirements: (a) linear scale and (b) decibel scale. The structure design is as follows: 1.09H∕(LH)2∕246L2∕(HL)2∕1.05H∕20.66A∕; 1.13H∕(LH)2∕500L2∕(HL)2∕1.09H∕24.79A∕; 1.06H∕(LH)2∕412L2∕(HL)2∕1.02H∕31.11A∕; and 0.73H∕(LH)2∕298L2∕(HL)2∕1.27H∕, with nH = 2.09, nL = 1.46, nL2 = 1.44, nA = 1. External medium air (nA = 1).

Fig. 2
Fig. 2

Principle of measurement of wafer thickness.

Fig. 3
Fig. 3

Experimental transmission spectra of the three single SSFs. The structure designs are as follows: Light gray curve, (HL)3H∕186.01 L2∕(HL)3H (SSF1); black curve, (HL)3H∕260.02 L2∕(HL)3∕1.46H (SSF2); gray curve, (HL)3H∕278.03 L2∕(HL)3∕1.46H (SSF3); where H, Ta2O5; L, SiO2; L2, silica substrate; external medium, air.

Fig. 4
Fig. 4

Experimental transmission spectra of the three-cavity SSFs: (a) linear scale and (b) decibel scale. The structure design is as follows: SSF2∕air∕SSF1∕air∕SSF3. External medium, air.

Fig. 5
Fig. 5

Theoretical transmission spectrum of the interleaver: (a) linear scale and (b) decibel scale. The structure design is as follows: HLH∕246L2∕HLH∕A∕, HLH∕246L2∕HLH∕A, and HLH∕246L2∕HLH, with nH = 2.09, nL = 1.46, nL2 = 1.444, nA = 1. External medium air.

Fig. 6
Fig. 6

Theoretical GD dispersion of the interleaver. The structure is identical to that in Fig. 5.

Fig. 7
Fig. 7

Experimental transmission spectra of the interleaver: (a) linear scale and (b) decibel scale. The structure design is as follows: HLH∕1864L2∕HLH∕air; HLH∕1864L2∕HLH∕air; and HLH∕1864L2∕HLH; where H, Ta2O5; L, SiO2; L2, silica substrate; external medium air.

Fig. 8
Fig. 8

Spectral mismatch between theoretical and experimental channels of the 50–200 GHz interleaver filter.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( 2 π / λ 0 ) n s p d s p + δ m = p π ,
Q = λ 0 Δ λ 3   dB = ( 2 π n s p d s p λ 0 + λ 0 d δ m d λ ) R m ( 1 R m ) .
FSR = λ 0     2 2 n s p d s p .
SSF1 = ( HL ) 3 H / 186.01 L 2 / ( HL ) 3 H,
SSF2 = ( HL ) 3 H / 260.02 L 2 / ( HL ) 3 / 1.46 H,
SSF3 = ( HL ) 3 H / 278.03 L 2 / ( HL ) 3 / 1.46 H .
GD = d Φ d ω ,
FSR 1 = FSR 0 [ 1 + λ 0 n s p ( λ 0 ) ( n λ ) λ = λ 0 ] ,
n λ ( 1550   nm ) = 1.2 × 10 5 nm 1 .

Metrics