Abstract

The monitor passband width of an optical monitor is an important parameter for the fabrication of a dense-wavelength-division-multiplexing (DWDM) filter. The peak insertion loss and transmittance of one-cavity narrow-bandpass filters (NBPFs) were analyzed by using different passband widths. The simulation monitoring curves of the last layer of the first, second, third, and fourth cavities of a five-cavity DWDM filter with different monitor passband widths were investigated. The last layer of each cavity is very sensitive to the monitor passband width, showing that the monitor passband width of an optical monitor should be less than half the designed passband width. This analysis demonstrates the successful fabrication of a five-cavity DWDM filter.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, 'Tutorial on the design of telecommunication filters,' presented at the Eighth Optical Interference Coatings Conference, Banff, Alberta, Canada, 15-20 July 2001, paper WC1.
  2. C.-C. Lee, Thin Film Optics and Coating Technologies, 4th ed. (Yi Hsien Publishing, 2004), Chap. 12.
  3. R. R. Willey, 'Achieving narrow bandpass filters which meet the requirements for DWDM,' Thin Solid Films 398-399, 1-9 (2001).
    [CrossRef]
  4. P. Bousquet, A. Fornier, R. Kowalczak, E. Pelletier, and P. Roche, 'Optical filters: monitoring process allowing the auto-correction of thickness errors,' Thin Solid Films 13, 285-290 (1972).
    [CrossRef]
  5. R. R. Willey, 'Simulation of errors in the monitoring of narrow bandpass filters,' Appl. Opt. 41, 3193-3195 (2002).
    [CrossRef] [PubMed]
  6. R. R. Willey, 'Application of a refined error model of turning point monitoring to the simulation of narrow bandpass filter production,' Proc. Soc. Vacuum Coaters 45, 295-298 (2002).
  7. K. Postava, J. Pistora, M. Kojima, K. Kikuchi, K. Endo, and T. Yamaguchi, 'Thickness monitoring of optical filters for DWDM applications,' Opt. Express 11, 610-616 (2003).
    [CrossRef] [PubMed]

2003 (1)

2002 (2)

R. R. Willey, 'Application of a refined error model of turning point monitoring to the simulation of narrow bandpass filter production,' Proc. Soc. Vacuum Coaters 45, 295-298 (2002).

R. R. Willey, 'Simulation of errors in the monitoring of narrow bandpass filters,' Appl. Opt. 41, 3193-3195 (2002).
[CrossRef] [PubMed]

2001 (1)

R. R. Willey, 'Achieving narrow bandpass filters which meet the requirements for DWDM,' Thin Solid Films 398-399, 1-9 (2001).
[CrossRef]

1972 (1)

P. Bousquet, A. Fornier, R. Kowalczak, E. Pelletier, and P. Roche, 'Optical filters: monitoring process allowing the auto-correction of thickness errors,' Thin Solid Films 13, 285-290 (1972).
[CrossRef]

Bousquet, P.

P. Bousquet, A. Fornier, R. Kowalczak, E. Pelletier, and P. Roche, 'Optical filters: monitoring process allowing the auto-correction of thickness errors,' Thin Solid Films 13, 285-290 (1972).
[CrossRef]

Endo, K.

Fornier, A.

P. Bousquet, A. Fornier, R. Kowalczak, E. Pelletier, and P. Roche, 'Optical filters: monitoring process allowing the auto-correction of thickness errors,' Thin Solid Films 13, 285-290 (1972).
[CrossRef]

Kikuchi, K.

Kojima, M.

Kowalczak, R.

P. Bousquet, A. Fornier, R. Kowalczak, E. Pelletier, and P. Roche, 'Optical filters: monitoring process allowing the auto-correction of thickness errors,' Thin Solid Films 13, 285-290 (1972).
[CrossRef]

Lee, C.-C.

C.-C. Lee, Thin Film Optics and Coating Technologies, 4th ed. (Yi Hsien Publishing, 2004), Chap. 12.

Macleod, H. A.

H. A. Macleod, 'Tutorial on the design of telecommunication filters,' presented at the Eighth Optical Interference Coatings Conference, Banff, Alberta, Canada, 15-20 July 2001, paper WC1.

Pelletier, E.

P. Bousquet, A. Fornier, R. Kowalczak, E. Pelletier, and P. Roche, 'Optical filters: monitoring process allowing the auto-correction of thickness errors,' Thin Solid Films 13, 285-290 (1972).
[CrossRef]

Pistora, J.

Postava, K.

Roche, P.

P. Bousquet, A. Fornier, R. Kowalczak, E. Pelletier, and P. Roche, 'Optical filters: monitoring process allowing the auto-correction of thickness errors,' Thin Solid Films 13, 285-290 (1972).
[CrossRef]

Willey, R. R.

R. R. Willey, 'Simulation of errors in the monitoring of narrow bandpass filters,' Appl. Opt. 41, 3193-3195 (2002).
[CrossRef] [PubMed]

R. R. Willey, 'Application of a refined error model of turning point monitoring to the simulation of narrow bandpass filter production,' Proc. Soc. Vacuum Coaters 45, 295-298 (2002).

R. R. Willey, 'Achieving narrow bandpass filters which meet the requirements for DWDM,' Thin Solid Films 398-399, 1-9 (2001).
[CrossRef]

Yamaguchi, T.

Appl. Opt. (1)

Opt. Express (1)

Proc. Soc. Vacuum Coaters (1)

R. R. Willey, 'Application of a refined error model of turning point monitoring to the simulation of narrow bandpass filter production,' Proc. Soc. Vacuum Coaters 45, 295-298 (2002).

Thin Solid Films (2)

R. R. Willey, 'Achieving narrow bandpass filters which meet the requirements for DWDM,' Thin Solid Films 398-399, 1-9 (2001).
[CrossRef]

P. Bousquet, A. Fornier, R. Kowalczak, E. Pelletier, and P. Roche, 'Optical filters: monitoring process allowing the auto-correction of thickness errors,' Thin Solid Films 13, 285-290 (1972).
[CrossRef]

Other (2)

H. A. Macleod, 'Tutorial on the design of telecommunication filters,' presented at the Eighth Optical Interference Coatings Conference, Banff, Alberta, Canada, 15-20 July 2001, paper WC1.

C.-C. Lee, Thin Film Optics and Coating Technologies, 4th ed. (Yi Hsien Publishing, 2004), Chap. 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Ideal runsheet of a five-cavity 100 GHz DWDM filter with the design substrate∕ ( HL ) 7 H 6 LH ( LH ) 7 [ L ( HL ) 8 H 6 LH ( LH ) 8 ] 3 [ L ( HL ) 7 H 6 LH ( LH ) 6 1.3 H 1.42 L / air .

Fig. 2
Fig. 2

Optical performance of the designed five-cavity 100 GHz DWDM filter. The passband width at - 0.5 dB is 0.6 nm , and the stop-band width at - 30 dB is 1.17 nm .

Fig. 3
Fig. 3

Light flux in the monitor passband width.

Fig. 4
Fig. 4

Spectrum for the last layer of a single cavity cut at the turning point (0.58H) and at 1H.

Fig. 5
Fig. 5

Runsheet of a three-cavity filter cut at the turning point.

Fig. 6
Fig. 6

Magnification of Fig. 5 around the last layer of the first cavity.

Fig. 7
Fig. 7

Spectrum of a deposited three-cavity filter monitored by the turning-point method.

Fig. 8
Fig. 8

Simulation monitoring curve of the last layer of design A with a designed passband width Δλ D = 0.439 nm and different monitor passband widths Δλ M .

Fig. 9
Fig. 9

Simulation monitoring curve of the last layer of design B with a designed passband width Δλ D = 0.236 nm and different monitor passband widths Δλ M .

Fig. 10
Fig. 10

Simulation monitoring curve of design A with two different monitor passband widths Δλ M .

Fig. 11
Fig. 11

Simulation monitoring curve of the last layer of the second cavity with a designed passband width Δλ D = 0.349 nm and different monitor passband widths Δλ M .

Fig. 12
Fig. 12

Simulation monitoring curve of the last layer of the third cavity with a designed passband width Δλ D = 0.457 nm and different monitor passband widths Δλ M .

Fig. 13
Fig. 13

Simulation monitoring curve of the last layer of the fourth cavity with a designed passband width Δλ D = 0.550 nm and different monitor passband widths Δλ M .

Fig. 14
Fig. 14

Measured spectrum of a deposited five-cavity DWDM filter.

Tables (2)

Tables Icon

Table 1 Change of Transmittance and PIL for One-Cavity NBPFs with Different Designed Passband Widths

Tables Icon

Table 2 Change of Passband Width Δλ D with Cavity Number

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

substrate∕ ( HL ) 7 H 6 LH ( LH ) 7 [ L ( HL ) 8 H 6 LH ( LH ) 8 ] 3 L ( HL ) 7 H 6 LH ( LH ) 6 1.3 H 1.42 L / air ,

Metrics