Abstract

The theoretical study and the experimental realization of an ultranarrow bandpass filter, joining a fiber Bragg grating and a dielectric mirror directly deposited at the extremity of the fiber tip, is presented. The features of such a filter are in very good accordance with the results of theoretical simulations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, 'Mica interference filters with transmission bands of very narrow half-widths,' J. Opt. Soc. Am. 49, 794-806 (1959).
    [CrossRef]
  2. R. R. Austin, 'The use of solid etalon devices as narrowband interference filters,' Opt. Eng. 11, 68-69 (1972).
  3. A. E. Roche and A. M. Title, 'Tilt tunable ultra narrow-band filters for high resolution photometry,' Appl. Opt. 14, 765-770 (1975).
    [CrossRef] [PubMed]
  4. J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
    [CrossRef]
  5. J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin-Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
    [CrossRef]
  6. J. Bittebierre and B. Lazarides, 'Narrow-bandpass filters with broad rejection band for single-mode waveguides,' Appl. Opt. 40, 11-19 (2001).
    [CrossRef]
  7. M. G. Moharam and T. K. Gaylord, 'Chain matrix analysis of arbitrary-thickness dielectric reflection gratings,' J. Opt. Soc. Am. 72, 187-190 (1982).
    [CrossRef]
  8. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2001).
  9. H. Kogelnik, 'Coupled wave theory for thick hologram gratings,' Bell Syst. Tech. J. 48, 2909-2947 (1969).
  10. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, 'Diffractive optical elements in photosensitive inorganic glasses,' in Inorganic Optical Materials III, A. J. Marker III and M. J. Davis, eds., Proc. SPIE 4452, 39-47 (2001).
    [CrossRef]

2003 (2)

J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
[CrossRef]

J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin-Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
[CrossRef]

2001 (2)

J. Bittebierre and B. Lazarides, 'Narrow-bandpass filters with broad rejection band for single-mode waveguides,' Appl. Opt. 40, 11-19 (2001).
[CrossRef]

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, 'Diffractive optical elements in photosensitive inorganic glasses,' in Inorganic Optical Materials III, A. J. Marker III and M. J. Davis, eds., Proc. SPIE 4452, 39-47 (2001).
[CrossRef]

1982 (1)

1975 (1)

1972 (1)

R. R. Austin, 'The use of solid etalon devices as narrowband interference filters,' Opt. Eng. 11, 68-69 (1972).

1969 (1)

H. Kogelnik, 'Coupled wave theory for thick hologram gratings,' Bell Syst. Tech. J. 48, 2909-2947 (1969).

1959 (1)

Austin, R. R.

R. R. Austin, 'The use of solid etalon devices as narrowband interference filters,' Opt. Eng. 11, 68-69 (1972).

Bittebierre, J.

Dobrowolski, J. A.

Efimov, O. M.

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, 'Diffractive optical elements in photosensitive inorganic glasses,' in Inorganic Optical Materials III, A. J. Marker III and M. J. Davis, eds., Proc. SPIE 4452, 39-47 (2001).
[CrossRef]

Floriot, J.

J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin-Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
[CrossRef]

J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
[CrossRef]

Gaylord, T. K.

Glebov, L. B.

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, 'Diffractive optical elements in photosensitive inorganic glasses,' in Inorganic Optical Materials III, A. J. Marker III and M. J. Davis, eds., Proc. SPIE 4452, 39-47 (2001).
[CrossRef]

Kogelnik, H.

H. Kogelnik, 'Coupled wave theory for thick hologram gratings,' Bell Syst. Tech. J. 48, 2909-2947 (1969).

Lazarides, B.

Lemarchand, F.

J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin-Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
[CrossRef]

J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
[CrossRef]

Lequime, M.

J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
[CrossRef]

J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin-Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2001).

Moharam, M. G.

Roche, A. E.

Smirnov, V. I.

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, 'Diffractive optical elements in photosensitive inorganic glasses,' in Inorganic Optical Materials III, A. J. Marker III and M. J. Davis, eds., Proc. SPIE 4452, 39-47 (2001).
[CrossRef]

Title, A. M.

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

H. Kogelnik, 'Coupled wave theory for thick hologram gratings,' Bell Syst. Tech. J. 48, 2909-2947 (1969).

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

J. Floriot, F. Lemarchand, and M. Lequime, 'Double coherent solid-spaced filters for very narrow-bandpass filtering applications,' Opt. Commun. 222, 101-106 (2003).
[CrossRef]

Opt. Eng. (1)

R. R. Austin, 'The use of solid etalon devices as narrowband interference filters,' Opt. Eng. 11, 68-69 (1972).

Proc. SPIE (2)

J. Floriot, F. Lemarchand, and M. Lequime, 'Cascaded solid-spaced filters for DWDM applications,' in Advances in Optical Thin-Films, C. Amra, N. Kaiser, and H. A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
[CrossRef]

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, 'Diffractive optical elements in photosensitive inorganic glasses,' in Inorganic Optical Materials III, A. J. Marker III and M. J. Davis, eds., Proc. SPIE 4452, 39-47 (2001).
[CrossRef]

Other (1)

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of a hybrid filter, including a VBG, an ML, and a DM.

Fig. 2
Fig. 2

Theoretical transmission of a hybrid filter (a) in a wide spectral range and (b) close to the central wavelength. The hybrid filter includes a VBG (central wavelength, 1550 nm ; length, 1.6 mm ; mean refractive index, 1.46; modulation amplitude, 5.3 × 10 - 4 ; reflectivity, 88%) and a DM (number of layers 7, high-index layer Ta 2 O 5 , low-index layer SiO 2 , reflectivity 88%).

Fig. 3
Fig. 3

Influence of the phase term on the spectral profile. The main features of the hybrid filter are identical to the ones given in the Fig. 2.

Fig. 4
Fig. 4

Evolution of the spectral response of the hybrid filter with the position of the metallic mirror experimentally used instead of the DM. The various positions of the mirror correspond to different air gap thicknesses and then to different values of the phase term (D3 is close to the resonance, whereas D5 or D6 are close to the antiresonance).

Fig. 5
Fig. 5

Comparison between theoretical predictions (left column) and experimental results (right column) for a hybrid filter manufactured by depositing an M9 DM ( ZnS / YF 3 ) at the extremity of a FBG Grating through a YF3 ML.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = n 0 + Δ n sin ( 2 π z Λ + ϕ ) ,
Φ = ( ϕ + 2 π L Λ ) + φ DM ( λ 0 ) ,
R 2 ( λ 0 ) = tanh 2 ( π n λ 0 ) .
T max = ( 1 - R 1 ) ( 1 - R 2 ) ( 1 - R 1 R 2 ) 2
δλ = λ 0 2 2 n 0 t 1 - R 1 R 2 π ( R 1 R 2 ) 1 / 4 ,
φ f = ( ϕ + 2 π L Λ ) ,
Φ = ( ϕ + 2 π L Λ ) + 2 π 2 n L e λ 0 + φ DM ( λ 0 ) = 0 ( 2 π ) ,

Metrics