Abstract

Results are presented for the second Optical Society of America's Optical Interference Coatings Manufacturing Problem. The participants were asked to produce multilayer coatings which, in the 450650  nm spectral region and for light incident at 60°, would have transmittances of 0.7  and   0 .3 for p- and s-polarized light, respectively. Three different teams each submitted four solutions. Three different deposition processes were used to produce these coatings. The smallest average departure from the target transmission values was 0.79%. A number of interesting conclusions can be drawn from this exercise.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, 'Topical Meeting on Optical Interference Coatings (OIC '2001): manufacturing problem,' Appl. Opt. 41, 3039-3052 (2002).
  2. B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
    [CrossRef]

2001 (1)

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, 'Topical Meeting on Optical Interference Coatings (OIC '2001): manufacturing problem,' Appl. Opt. 41, 3039-3052 (2002).

2000 (1)

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Akiyama, T.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Browning, S.

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, 'Topical Meeting on Optical Interference Coatings (OIC '2001): manufacturing problem,' Appl. Opt. 41, 3039-3052 (2002).

Clarke, G.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Dobrowolski, J. A.

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, 'Topical Meeting on Optical Interference Coatings (OIC '2001): manufacturing problem,' Appl. Opt. 41, 3039-3052 (2002).

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Howe, L.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Jacobson, M.

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, 'Topical Meeting on Optical Interference Coatings (OIC '2001): manufacturing problem,' Appl. Opt. 41, 3039-3052 (2002).

Kikuchi, K.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Matsumoto, A.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Nadal, M.

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, 'Topical Meeting on Optical Interference Coatings (OIC '2001): manufacturing problem,' Appl. Opt. 41, 3039-3052 (2002).

Osborne, N.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Ranger, M.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Song, Y.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Sullivan, B. T.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Appl. Opt. (2)

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, 'Topical Meeting on Optical Interference Coatings (OIC '2001): manufacturing problem,' Appl. Opt. 41, 3039-3052 (2002).

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, 'High-rate automated deposition system for the manufacture of complex multilayer coatings,' Appl. Opt. 39, 157-167 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conventional three-, five- and nine-layer solutions having Tp = 0.8, Ts = 0.2 over 100, 200, and 300 nm bandwidths, for a light incident at 60° [rows (a), (b), and (c), respectively].

Fig. 2
Fig. 2

Conventional solutions having polarization splits Tp :Ts = 0.8:0.2, 0.7:0.3, and 0.6:0.4 in the 450–650 nm spectral region for a light incident at 60° [rows (a), (b), and (c), respectively].

Fig. 3
Fig. 3

Three different types of solutions with Tp = 0.7, Ts = 0.3 in the 450–650 nm spectral region for a light incident at 60°: row (a), conventional design; row (b), dielectric layers on both sides of the substrate; row (c), metal–dielectric solution.

Fig. 4
Fig. 4

Error-sensitivity calculations for three different types of solutions: row (a), solution to Fig. 3(a); rows (b), (c), solution to Fig. 3(b); row (d), solution to Fig. 3(c). The results for 1%, 1 nm random perturbations of the layer thicknesses are shown in columns (1) and (2), respectively (see text for more details).

Fig. 5
Fig. 5

Results of the measurements. Column 1, sample A1 from Netterfield et al., CSIRO, Australia; column 2, sample B1 from Ma et al., National Research Council of Canada; column 3, sample B2 from Ma et al., National Research Council of Canada; column 4, sample C1 from Zhupanov et al., from “Lutch”, Russia. In this diagram, row 1 depicts the refractive-index profiles of the systems, row 2 the measured normal incidence transmittances, and row 3 the measured 60° incidence transmittances for p- and s-polarized light.

Tables (2)

Tables Icon

Table 1 Participants in the Manufacturing Problem a

Tables Icon

Table 2 Summary of the Results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MF = { 1 2 m [ i = 1 m ( T i , p T T i , p M 0.01 ) 2 + i = 1 m ( T i , s T T i , s M 0.01 ) 2 ] } 1 / 2 ,

Metrics