Abstract

A system for the course control and spatial stabilization of the output beam of a femtosecond laser system is realized. An accuracy of 0.5μrad is achieved long term in a laboratory environment for a beam with an initially daily deviation of more than 40μrad. The application and importance of the method is illustrated for laser pulse shortening in a hollow waveguide resulting in a stable output power and an 8  fs  pulse duration for more than 10  h operation time.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
    [CrossRef]
  2. N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901-203904 (2002).
    [CrossRef] [PubMed]
  3. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, "Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum," Opt. Lett. 28, 1987-1989 (2003).
    [CrossRef] [PubMed]
  4. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  5. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  6. S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, "Fast laser beam position control with submicroradian precision," Opt. Commun. 65, 121-126 (1998).
    [CrossRef]
  7. R. L. Abrams, "Coupling losses in hollow waveguide laser resonators," IEEE J. Quantum Electron. QE-8, 838-843 (1972).
    [CrossRef]

2003

2002

N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901-203904 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

2000

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

1998

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, "Fast laser beam position control with submicroradian precision," Opt. Commun. 65, 121-126 (1998).
[CrossRef]

1996

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

1972

R. L. Abrams, "Coupling losses in hollow waveguide laser resonators," IEEE J. Quantum Electron. QE-8, 838-843 (1972).
[CrossRef]

Abrams, R. L.

R. L. Abrams, "Coupling losses in hollow waveguide laser resonators," IEEE J. Quantum Electron. QE-8, 838-843 (1972).
[CrossRef]

Biegert, J.

De Silvestri, S.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Grafstrom, S.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, "Fast laser beam position control with submicroradian precision," Opt. Commun. 65, 121-126 (1998).
[CrossRef]

Harbarth, U.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, "Fast laser beam position control with submicroradian precision," Opt. Commun. 65, 121-126 (1998).
[CrossRef]

Keller, U.

Korn, G.

N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901-203904 (2002).
[CrossRef] [PubMed]

Kowalski, J.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, "Fast laser beam position control with submicroradian precision," Opt. Commun. 65, 121-126 (1998).
[CrossRef]

Neumann, R.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, "Fast laser beam position control with submicroradian precision," Opt. Commun. 65, 121-126 (1998).
[CrossRef]

Nisoli, M.

Noehte, S.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, "Fast laser beam position control with submicroradian precision," Opt. Commun. 65, 121-126 (1998).
[CrossRef]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Sansone, G.

Schenkel, B.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Stagira, S.

Svelto, O.

Vozzi, C.

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Zhavoronkov, N.

N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901-203904 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

IEEE J. Quantum Electron.

R. L. Abrams, "Coupling losses in hollow waveguide laser resonators," IEEE J. Quantum Electron. QE-8, 838-843 (1972).
[CrossRef]

Nature

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Commun.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, "Fast laser beam position control with submicroradian precision," Opt. Commun. 65, 121-126 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901-203904 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement for the beam stabilization system. MM 1 and MM 2, active mirrors with piezoactuators; W 1 and W 2, beam splitters with transmission T = 0.97; P 1 and P 2, reference points for beam stabilization; PC, computer (PII, 500 MHz, 128 RAM); PS, driving electronics for MM 1 and MM 2 mirrors (New Focus, 8766 6-axis driver kit); L 1 and L 2, focusing lens; FM, focusing mirror with radius R = 4 m; NGVD (negative group-velocity dispersion), negatively chirped mirrors.

Fig. 2
Fig. 2

Images from the CCD camera for the reference points (a) P 1 and (b) P 2. The white crosses on the images mark the calculated centers of mass.

Fig. 3
Fig. 3

Deviations of the laser beam position from the original point with time recorded for the operations (a) without, and (b) with an active beam stabilization system. The time interval between the successive points is 10 s.

Fig. 4
Fig. 4

Average power of the laser beam measured after the hollow waveguide with (open circles) and without (solid squares) stabilization of the laser beam direction and ultrashort-pulse duration (triangles, right vertical scale) for the case with stabilization as a function of time.

Fig. 5
Fig. 5

Spectra of ultrashort laser pulses measured for initial alignment (solid curve) and after 60 (dashed curve), 120 (dotted curve), and 180 (dashed–dotted curve, filled area) min operation without stabilization. Note that with the operating stabilization system, the deviations of the spectra from the initial shape (solid curve) were within the accuracy of the measurement. The insert shows the fringe-resolved autocorrelation trace measured (circles) and calculations from the initial spectrum (solid curve).

Equations (73)

Equations on this page are rendered with MathJax. Learn more.

0.5 μ rad
40 μ rad
8   fs  pulse
10   h
7.8   fs
M M 1
M M 2
M M 1
P 1
W 1
( P 1 )
( M M 2 )
W 1
M M 2
M M 2
P 2
P 1   and   P 2
W 1   and   W 2
L 1   and   L 2
P 1   and   P 2
10 5 0 %
X P 1 , P 2 = i , j ( U i , j i ) i , j U i , j ; Y P 1 , P 2 = i , j ( U i , j j ) i , j U i , j ,
U i , j
( i , j )
1   Hz
1   Hz
D 1
W 1
M M 1 ,
D 2
W 2
M M 2
δ l P 1 ,   and   δ l P 2
P 1
P 2
δ l P 1 , P 2 = D 1 , 2 × α
10 %
1   mJ
27   fs
800   nm
1   kHz
( 240 μ m
Δ x , Δ y
Δ θ = [ ( Δ x 2 + Δ y 2 ) 1 / 2 / f ]
4   h
10   h
20 μ rad
40 μ rad
1 μ rad
0.5 μ rad
3.8   fs
100 250 μ m
20 μ m
240 μ m
11.5 %
45 μ rad
90 μ m
400   nm
240 μ m
50 fs 2 / bounce
15 2 0   min
3   h
30 %
7.8   fs
16   fs
1   h
1.7 %
7.7 8 . 3   fs
3   h
10   fs
10   h
0.4   m × 0 .8   m
8 ± 0.3   fs

Metrics