Abstract

By employing a commercially available high-voltage switch in a time-gating circuit to drive a channel photomultiplier (CPM), the afterpulse rates are significantly reduced in the time window to collect fluorescence >200  ns after the pulsed laser excitation. The CPM, kept deactivated under normal conditions (normally off), is turned on immediately after the passage of the laser pulse by shifting the voltage applied to the photocathode by 150  V to collect the fluorescence. When the detection system is used as part of a laser-induced fluorescence instrument to measure atmospheric OH radicals with the photon-counting method, the background signal is reduced by more than a factor of 10 as compared with our previous case where a conventional dynode-gated photomultiplier tube (PMT) is used, while the sensitivity toward the fluorescence is almost unchanged. A detection limit as low as 2×105  radicals  cm3 or 0.008 parts per trillion by volume is achieved for OH, with an integration time of 1 min and a signal-to-noise ratio of 2, enabling sensitive detection of the important radical in the atmosphere. This system is a superior choice with higher sensitivity and cost effectiveness as compared with the gated PMTs utilizing a microchannel plate as an electron multiplier, and could also be used effectively in light detection and ranging (lidar) instruments, where a delayed scattering signal would be efficiently discriminated from afterpulses.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (108)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription